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Abstract

We organized for WCCI 2008 a challenge to evaluate causal modeling techniques, focusing
on predicting the effect of “interventions” performed by an external agent. Examples of
that problem are found in the medical domain to predict the effect of a drug prior to
administering it, or in econometrics to predict the effect of a new policy prior to issuing
it. We concentrate on a given target variable to be predicted (e.g., health status of a
patient) from a number of candidate predictive variables or “features” (e.g., risk factors in
the medical domain). Under interventions, variable predictive power and causality are tied
together. For instance, both smoking and coughing may be predictive of lung cancer (the
target) in the absence of external intervention; however, prohibiting smoking (a possible
cause) may prevent lung cancer, but administering a cough medicine to stop coughing (a
possible consequence) would not. We propose four tasks from various application domains,
each dataset including a training set drawn from a “natural” distribution and three test sets:
one from the same distribution as the training set and two corresponding to data drawn
when an external agent is manipulating certain variables. The goal is to predict a binary
target variable, whose values on test data are withheld. The participants were asked to
provide predictions of the target variable on test data and the list of variables (features) used
to make predictions. The challenge platform remains open for post-challenge submissions
and the organization of other events is under way (see http://clopinet.com/causality).

Keywords: challenge, competition, causality, causal discovery, feature selection, inter-
vention, manipulation.
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1. Introduction

The problem of attributing causes to effects is pervasive in science, medicine, economy and
almost every aspect of our everyday life involving human reasoning and decision making.
One important goal of causal modeling is to unravel enough of the data generating process
to be able to make predictions under manipulations of the system of interest by an external
agent (e.g., experiments). Being able to predict the result of actual or potential experiments
(consequences or effects)1 is very useful because experiments are often costly and sometimes
impossible or unethical to perform. For instance, in policy-making, one may want to predict
“the effect on a population health status” of “forbidding individuals to smoke in public
places”, before passing a law. This example illustrates the case of an experiment which is
possible, but expensive. On the other hand, forcing people to smoke would constitute an
unethical experiment.

The need for assisting policy making and the availability of massive amounts of “obser-
vational” data has prompted the proliferation of proposed causal discovery techniques. The
latter extract structure of the data generating process from which the effect of intervention
can be readily computed. Each scientific discipline has its favorite approach (e.g., Bayesian
networks in biology and structural equation modeling in the social sciences), not necessar-
ily reflecting a better match of techniques to domains, but rather the historical tradition.
Standard benchmarks are needed to foster scientific progress. In organizing a challenge for
WCCI on the theme of causality, our goals included:

• Stimulating the causal discovery community to make progress by exposing it to large
datasets, whose size is more typical of data mining and machine learning tasks than
causal learning.

• Drawing the attention of the computational intelligence community to the importance
of causal modeling and discovery problems and the opportunities to exploit machine
learning and data mining techniques.

• Pointing out possible limitations of current methods on some particularly difficult
problems.

The last item is particularly relevant for feature selection algorithms emanating from ma-
chine learning as they do not seek to model mechanisms: they do not attempt to uncover
cause-effect relationships between features and target. This is justified from a prediction
task where training and tests sets are obtained by drawing samples identically and indepen-
dently from the same “natural” distribution. We call this a purely “observational” setting.
In that setting, statistical predictive models do not need to model data generative mech-
anisms and both causal and consequential features may be predictive of a certain target
variable. For instance both smoking and coughing are predictive of respiratory disease; one
is a cause and the other a symptom (consequence). In contrast, in this challenge, we investi-
gated a setting in which the training and test data are not necessarily identically distributed.
Test data may be drawn from a post-manipulation distribution distinct from the “natural”
distribution from which training data are drawn. This problem is related to the more gen-
eral problem of “distribution shift” or “covariate shift”, which has recently retained the
attention of the machine learning community and was the object of a challenge (Quiñonero

1. In this paper, we will use interchangeably “manipulation”/“intervention” and “consequence”/“effect”.
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Candela et al., 2007). In the particular case we are interested in, the post-manipulation
distribution results from actions or interventions of an external agent who is forcing some
variables to assume particular values rather than letting the data generative system produce
values according to its own dynamics. Acting on a cause can change the target value, but
acting on a consequence cannot. For instance, acting on a cause of disease like smoking
can change the disease state, but acting on the symptom (coughing) cannot. Thus it is
extremely important to distinguish between causes and effects to predict the consequences
of actions on a given target variable.

The main objective of the challenge is to predict a binary target variable (classification
problem), from a set of candidate predictive variables, which may be binary or continuous.
For each task of the challenge (e.g., REGED, SIDO, etc.), we have a single training set,
but several test sets (associated with the dataset name, e.g., REGED0, REGED1, and
REGED2). The training data come from a so-called “natural distribution”, and the test
data in version zero of the task (e.g., REGED0) are also drawn from the same distribution.
We call this test set a “natural” or “unmanipulated” test set. The test data from the
two other versions of the task (e.g., REGED1 and REGED2) are “manipulated” test sets
resulting from interventions of an external agent, which has “manipulated” some or all
the variables in some way (excluding the “target” or “response variable”). The effect of
such manipulations is to disconnect the manipulated variables from their natural causes.
This may affect the predictive power of a number of variables in the system, including the
manipulated variables. Hence, to obtain optimum predictions of the target variable, feature
selection strategies should take into account such manipulations.

In this challenge, we are focusing on causal relationships between random variables, as
opposed to causal relationships between events, or objects. We consider only stationary
systems, hence eliminating the need for an explicit reference to time in our samples. This
setup is typical of so-called “cross-sectional” studies in medicine (as opposed to “longitu-
dinal” studies). In practice, this means that the samples for each version of the test set,
e.g., REGED0, REGED1, and REGED2, are drawn independently, according to a given
distribution, which changes only between test set version. Having no explicit reference to
time may be surprising to researchers new to causal modeling, since causes must always
precede their effects. Causal models in this context enforce an order of evaluation of the
variables, but the update is assumed to be instantaneous.2

The type of causal relationships under consideration have often been modeled as Bayesian
causal networks or structural equation models (SEM) (Pearl, 2000; Spirtes et al., 2000;
Neapolitan, 2003). In the graphical representation of such models, an arrow between two
variables A → B indicates the direction of a causal relationship: A causes B. A node in
of the graph, labeled with a particular variable X, represents a mechanism to evaluate the
value of X given the parent node variable values. For Bayesian networks, such evaluation is
carried out by a conditional probability distribution P (X|Parents(X)) while for structural
equation models it is carried out by a function of the parent variables, plus some noise.
Learning a causal graph can be thought of as a model selection problem: Alternative graph
architectures are considered and a selection is performed, either by ranking the architec-

2. When manipulations are performed, we must specify whether we sample from the distribution before or
after the effects of the manipulation have propagated. Here we assume that we sample after the effects
have propagated.
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tures with a global score (e.g., a marginal likelihood, or a penalty-based cost function),
or by retaining only graphs, which fulfill a number of constraints such as dependencies or
independencies between subsets of variables.

Bayesian networks and SEM provide a convenient language to talk about the type of
problem we are interested in, but our setting does not preclude of any particular model.
Some of the data used in the challenge were generated by real unknown processes, which
probably violate some commonly made causal modeling assumptions, such as “causal suffi-
ciency”3, linearity, Gaussian noise, absence of cycles, etc. By adopting a predictive modeling
perspective, we purposely took some distance with the interpretation of causal models as
data generative models. The goal of the challenge is not to reverse engineer the data gen-
erative process, it is to make accurate predictions of a target variable. To sharpen this
distinction, we made available only a limited amount of training data, such that the learner
may not necessarily be able to reliably determine all conditional dependencies and inde-
pendencies. Hence, modeling strategies making radical simplifying assumptions might do
better than strategy trying to be faithful to the data generative process, because of the
well-known fit vs. robustness (or bias vs. variance) tradeoff.

2. General setting

We created a web site from which data and instructions on how to participate were outlined:
http://clopinet.com/causality. This first causality challenge is part of a larger program,
which we initiated, called the “causality workbench”; the web site hosts repositories of
code, data, models, publications and other events, including challenges and teleconference
seminars. Our first challenge started on December 15, 2007 and ended on April 30, 2008.
Four datasets were proposed and progressively introduced (the last one being released 2
months prior the end of the challenge). More details on the datasets are found in Section 3.

Our challenge is formatted in a similar way as most machine learning problems: pairs
of training examples {x, y} are provided. The goal is to predict the target variable y for
new test instances of x. The elements of vector x are interchangeably called “variables”
or “features” in this paper. Unlike most machine learning problems, the training and test
sets are not always distributed similarly. We provide large test sets to obtain statistically
significant results. Both the training and the unlabeled test sets were provided from the
beginning of the competition. We required that the participants would not use the unlabeled
test data to train their models, and this rule was enforced by verifying the code of the best
ranking entrants after the end of the challenge (see Appendix). This rule was motivated
by several considerations: (1) We are investigating problems in which only “observational”
training data are available for model building. Test data are not supposed to be available at
model building time; we use them only to test the ability of our model to make predictions
about the effect of hypothetical actions performed on the system in the future. (2) In
a challenge, we need very large test sets to obtain small error bars on the participant
performances, otherwise most differences between algorithms would not be statistically
significant. However, such large amount of “manipulated” test data would not be available
all at once in many real world situations.

3. ”Causal sufficiency” roughly means that there are no unobserved common causes of the observed vari-
ables.
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Prediction results and features sets could be submitted on-line to get immediate feed-
back, as a means of stimulating participation. To limit the amount of knowledge that
could be gained from viewing test set results, the participants were only informed about
the quartile of their method’s performances. In previous challenges we organized (Guyon
et al., 2006a,b, 2008b), we provided feed-back on a small validation set, whose target values
were released shortly before the end of the challenge, and we used a separate larger test
to perform the final evaluation. In this challenge, we developed this new way of providing
feed-back (using performance quartiles) because information about the post-manipulation
distribution (distinct from the training data “natural” distribution) could be induced from
performance feed-back on a validation set. The quartile method achieves essentially the
same goal of stimulating the participants while simplifying the challenge protocol.

Another difference compared to our previous challenges is that we did not request that
the participants return results on all tasks of the challenge. For each task, they were only
required to return predictions on all three versions of the test set (manipulated or not). In
this way, we intended to lower the level of effort of participation because we knew many
algorithms lend themselves only to certain kinds of data. To encourage participants to
submit results on more than one task, we set up an exponential reward system: a prize of
$100 was promised for winning on any of the 4 tasks, but the progression of the rewards
for winning on 2, 3, or 4 datasets was $400, $900, and $1600. This successfully encouraged
entrants to submit on all datasets. Another final difference from previous challenges is that
we authorized only one final entry (as opposed to 5 in previous challenges), to compensate
for the fact that participants had 4 chances of winning (one for each dataset). In this way,
we limited the statistical risk that the winning entry be better “by chance”. However, we
did allow submissions of multiple prediction results for nested subsets of variables, with the
purpose of obtaining performance curves as a function of number of features. In Section 5,
our initial analysis is based on the best result in the performance curve for each participant.
We complemented it by an analysis making pairwise comparisons of entries at the same
number of features, to account for a possible bias detrimental to the participants who
provided single predictions.

To introduce the participants to the problem of making predictions under interventions,
we provided a tutorial (Guyon et al., 2007) and we created a toy example, which was not
part of the challenge, but which was interfaced to the challenge platform in the same way
as the other datasets. The participants could use it for practice purposes and we provided
guidance on how to solve the problem on the web site. We briefly describe this example,
illustrated in Figure 1, to clarify our setting. More details are found on the website of the
challenge.

LUCAS0: The toy example of Figure 1-a models the problem of predicting lung cancer
as a causal network. Each node represents a variable/feature and the arcs represent causal
relationships, i.e., A → B represents that A is a cause of B. The target variable is “Lung
Cancer”. Each node in the graph is associated with a table of conditional probabilities
P (X = x|Parent1(X) = p1, Parent2(X) = p2, ...), defining the “natural” distribution.
The generative model is a Markov process (a so-called “Bayesian network”), so the state
of the children is stochastically determined by the states of the parents. The values must
be drawn in a certain order, so that the children are evaluated after their parents. Both
the training and test sets of LUCAS0 are drawn according the natural distribution. In
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(e) LUCAP1

Figure 1: Lung cancer toy example. The dark green nodes represents the minimal
Markov blanket or “Markov boundary” (MB) of the target variable “Lung Can-
cer”. The white nodes are independent of the target. Given the MB, both white
and light green nodes are (conditionally) independent of the target. The manip-
ulated nodes are emphasized in red. As a result of being manipulated, they are
disconnected from their original causes and the MB is restricted to the remaining
dark green nodes. See text.
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the figure, we outline in dark green the Markov blanket of the target, which includes all
targets’s parents (node immediate antecedents), children (node immediate descendants),
and spouses (immediate antecedents of an immediate descendant). The Markov blanket
(MB) is the set of variables such that the target is independent of all other variables given
MB.4 It is widely believed that, if the MB were perfectly known, adding more variables to
the feature set would be unnecessary to make optimal predictions of the target variable.
However, this statement depends on the criterion of optimality and is true only in the sample
limit and if the predictor is asymptotically unbiased (Tsamardinos and Aliferis, 2003). For
example, a linear classifier may benefit from the inclusion of non-MB features, even in the
sample limit and with perfect knowledge of the MB, if the functional relation of the target
and the MB is non-linear. In this challenge, the goal is not to discover the MB, it is to
make best predictions of the target variable on test data.

LUCAS1: In the example of Figure 1-b, the training data are the same as in LUCAS0.
We model a scenario in which an external agent manipulates some of the variables of
the system, circled in red in the figure (Yellow Fingers, Smoking, Fatigue, and Attention
Disorder). The intention of such manipulations may include disease prevention or cure. The
external agent sets the manipulated variables to desired values, hence “disconnecting” those
variables from their parents. The other variables are obtained by letting the system evolve
according to its own dynamics. As a result of manipulations, many variables may become
disconnected from the target and the Markov blanket (MB) may change. If the identity
of the manipulated variables is revealed (as in the case of REGED1 and MARTI1), one
can deduce from the graph of the natural distribution inferred from training data, which
variables to exclude from the set of predictive variables. In particular, the MB of the post-
manipulation distribution is a restriction of the MB of the natural distribution resulting
from the removal of manipulated children and spouses whose children are all manipulated
(unless it is also a parent of the target).

LUCAS2: In Figure 1-c we manipulated all the variables except the target. As a result,
only the direct causes of the target are predictive, and they coincide with the Markov blanket
(MB) of the post-manipulation distribution.

LUCAP0: In Figure 1-d, we are modeling the following situation: Imagine that we
have REAL data generated from some UNKNOWN process (we do not know the causal
relationships among variables). Further, for various reasons, which may include practical
reasons, ethical reasons, or cost, we are unable to carry out any kind of manipulation
on the real variables, so we must resort to performing causal discovery and evaluating
the effectiveness of our causal discovery using unmanipulated data (data drawn from the
natural distribution). To that end, we add a large number of artificial variables called
“probes”, which are generated from some functions (plus some noise) of subsets of the real
variables. We shuffle the order of all the variables and probes not to make it too easy to
identify the probes. For the probes we (the organizers) have perfect knowledge of the causal
relationships. For the other variables, we only know that some of them (light green nodes)
might be predictive while not belonging to the MB, and some of them (dark green nodes)

4. Other definitions of the Markov blanket are possible. Our definition coincides with what other authors
call Markov boundary or “minimal” Markov blanket. Although we refer to “the” Markov blanket, for
some distributions it is not unique and it does not always coincide with the sets of parents, children and
spouses. But we limit ourselves to this case in the example, for simplicity.
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might belong to the MB. The members of the MB include some real variables and some
probes. To assess feature selection methods, we use the probes by computing statistics such
as the fraction of non-MB probes in the feature subset selected.

LUCAP1 and LUCAP2: While we cannot manipulate the real variables in our model
setup, we can manipulate the probes. The probe method allows us to conservatively evaluate
causal feature selection algorithms, because we know that the output of an algorithm should
not include any probe for a distribution where all probes are manipulated. The test sets
of LUCAP1 and LUCAP2 (Figure 1-e) are obtained by manipulating all probes (in every
sample) in two different ways. The training data are the same as in LUCAP0. Knowing
that we manipulated all probes, and that probes can only be non-causes of the target, a
possible strategy is to select only features which are causes of the target.5 If this strategy is
followed, the fraction of probes in the feature set selected allows us to compute an estimate
the fraction of non-causes wrongly selected.6

3. Description of the datasets

We use two types of data:

• Re-simulated data: We train a causal model (a causal Bayesian network or a struc-
tural equation model) with real data. The model is then used to generate artificial
training and test data for the challenge. Truth values of causal relationships are known
for the data generating model and used for scoring causal discovery results. REGED
is an example of re-simulated dataset.

• Real data with probe variables: We use a dataset of real samples. Some of the
variables may be causally related to the target and some may be predictive but non-
causal. The nature of the causal relationships of the variables to the target is unknown
(although domain knowledge may allow us to validate the discoveries to some extent).
We have added to the set of real variables a number of distractor variables called
“probes”, which are generated by an artificial stochastic process, including explicit
functions of some of the real variables, other artificial variables, and/or the target. All
probes are non-causes of the target, some are completely unrelated to the target. The
identity of the probes in concealed. The fact that truth values of causal relationships
are known only for the probes affects the evaluation of causal discovery, which is less
reliable than for artificial data.

The training data and test sets labeled 0 are generated from a so-called “natural”
pre-manipulation distribution. The variable values are sampled from the system when it
is allowed to evolve according to its own dynamics, after it has settled in a steady state.
For the probe method, the system includes the artificial probe generating mechanism. Test
sets labeled 1 and 2 are generated from a so-called post-manipulation distribution. An
external agent performs an “intervention” on the system. Depending on the problem at
hand, interventions can be of several kinds, e.g., clamping one or several variables to given

5. Note however that some of the real variables that are non-causes may be predictive, so eliminating all
non-causes of the target is a sure way to eliminate all probes but not necessarily an optimum strategy.

6. The validity of the estimation depends on many factors, including the number of probes and the distri-
butional assumptions of non-causes made in the probe data generative process.
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Table 1: Datasets. All target variables are binary. Each dataset has three test sets of the
same size numbered 0, 1, and 2.

Dataset Domain Type Features Feat. # Train # Test #
REGED Genomics Re-simulated Numeric 999 500 20000
SIDO Pharmacology Real + probes Binary 4932 12678 10000
CINA Econometrics Real + probes Mixed 132 16033 10000
MARTI Genomics Re-simulated Numeric 999 500 20000

values or drawing them from an alternative distribution, then sampling the other variables
according to the original conditional probabilities. In our design, the target variable
is never manipulated. For the probe method, since we do not have the possibility of
manipulating the real variables, we only manipulate the probes. The effect of manipulations
is to disconnect the variables from their natural causes. Manipulations allow us to eventually
influence the target, if we manipulate causes of the target. Manipulating non-causes should
have no effect on the target. Hence, without inferring causal relationships, it should be
more difficult to make predictions for post-manipulation distributions.

We proposed four tasks (Table 1):
REGED (REsimulated Gene Expression Dataset): Find genes which could be respon-

sible of lung cancer. The data are “re-simulated”, i.e., generated by a model derived from
real human lung-cancer microarray gene expression data. From the causal discovery point
of view, it is important to separate genes whose activity causes lung cancer from those
whose activity is a consequence of the disease. All three datasets (REGED0, REGED1,
and REGED2) include 999 features (no hidden variable or missing data), the same 500
training examples, and different test sets of 20000 examples. The target variable is binary;
it separates malignant samples (adenocarcinoma) from control samples (squamous). The
three test sets differ in their distribution, REGED0: No manipulation (distribution identical
to the training data). REGED1: A given set of variables are manipulated and their identity
is disclosed. REGED2: Many variables are manipulated, including all the consequences of
the target, but the identity of the manipulated variables was not disclosed. When variables
are manipulated, the model is allowed to evolve according to its own mechanism until the
effect of the manipulations propagate.

SIDO (SImple Drug Operation mechanisms) contains descriptors of molecules which
have been tested against the AIDS HIV virus. The target values indicate the molecular
activity (+1 active, −1 inactive). The causal discovery task is to uncover causes of molecular
activity among the molecule descriptors. This would help chemists in the design of new
compounds, retaining activity, but having perhaps other desirable properties (less toxic,
easier to administer). The molecular descriptors were generated programmatically from the
three dimensional description of the molecule, with several programs used by pharmaceutical
companies for QSAR studies (Quantitative Structure-Activity Relationship). For example,
a descriptor may be the number of carbon molecules, the presence of an aliphatic cycle,
the length of the longest saturated chain, etc. The dataset includes 4932 variables (other
than the target), which are either molecular descriptors (all potential causes of the target)
or “probes” (artificially generated variables that are not causes of the target). The training
set and the unmanipulated test set SIDO0 are similarly distributed. They are constructed
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such that some of the “probes” are effects (consequences) of the target and/or of other real
variables, and some are unrelated to the target or other real variables. Hence, both in the
training set and the unmanipulated test set, all the probes are non-causes of the target, yet
some of them may be “observationally” predictive of the target. In the manipulated test sets
SIDO1 and SIDO2, all the “probes” are manipulated in every sample by an external agent
(i.e., set to given values, not affected by the dynamics of the system) and can therefore
not be relied upon to predict the target. The identity of the probes is concealed. They
are used to assess the effectiveness of the algorithms to dismiss non-causes of the target
for making predictions in manipulated test data. In SIDO1, the manipulation consists in
a simple randomization of the variable values whereas in SIDO2 the values are chosen to
bias prediction results unfavorably, if the manipulated variables are chosen as predictors
(adversarial design).

CINA (Census Is Not Adult) is derived from census data (the UCI machine-learning
repository Adult database). The data consists of census records for a number of individ-
uals. The causal discovery task is to uncover the socio-economic factors affecting high
income (the target value indicates whether the income exceeds 50K). The 14 original at-
tributes (features) including age, workclass, education, marital status, occupation, native
country, etc. are continuous, binary, or categorical. Categorical variables were converted to
multiple binary variables (as we shall see, this preprocessing, which facilitates the tasks of
some classifiers, complicates causal discovery). Distracter features or “probes” (artificially
generated variables, which are not causes of the target) were added. In training data, some
of the probes are effects (consequences) of the target and/or of other real variables. Some
are unrelated to the target or other real variables. Hence, some of the probes may be corre-
lated to the target in training data, although they do not cause it. The unmanipulated test
data in CINA0 are distributed like the training data. Hence, both causes and consequences
of the target might be predictive in the unmanipulated test data. In contrast, in the manip-
ulated test data of CINA1 and CINA2, all the probes are manipulated by an external agent
(i.e., set to given values, not affected by the dynamics of the system) and therefore they
cannot be relied upon to predict the target. Similarly as for SIDO, the difference between
versions 1 and 2 is that in version 1 the probe values are simply randomized whereas in
version 2 they are chosen in an adversarial way.

MARTI (Measurement ARTIfact) is obtained from the same data generative process
as REGED, a source of simulated genomic data. Similarly to REGED the data do not have
hidden variables or missing data, but a noise model was added to simulate the imperfections
of the measurement device. The goal is still to find genes, which could be responsible of
lung cancer. The target variable is binary; it indicates malignant samples (adenocarcinoma)
vs. control samples (squamous). The feature values representing measurements of gene
expression levels are assumed to have been recorded from a two-dimensional microarray
32x32. The training set was perturbed by a zero-mean correlated noise model. The test
sets have no added noise. This situation simulates a case where we would be using different
instruments at “training time” and “test time”, e.g., we would use DNA microarrays to
collect training data and PCR for testing. We avoided adding noise to the test set because
it would be too difficult to filter it without visualizing the test data or computing statistics
on the test data, which we forbid. So the scenario is that the second instrument (used at
test time) is more accurate. In practice, the measurements would also probably be more
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expensive, so part of the goals of training would be to reduce the size of the feature set (we
did not make this a focus in this first challenge).

The problems proposed are challenging in several respects:

• Several assumptions commonly made in causal discovery are violated, including “causal
sufficiency”, “faithfulness”7, “linearity”, and “Gaussianity”.

• Relatively small training sets are provided, making it difficult to infer conditional
independencies and learning distributions.

• Large numbers of variables are provided, a particular hurdle for some causal discovery
algorithms that do not scale up.

More details on the datasets, including the origin of the raw data, their preparation,
past usage, and baseline results can be found in a Technical Report (Guyon et al., 2008).

4. Evaluation

The participants were asked to return prediction scores or discriminant values v for the
target variable on test examples, and a list of features used for computing the prediction
scores, sorted in order of decreasing predictive power, or unsorted. The classification deci-
sion is made by setting a threshold θ on the discriminant value v: predict the positive class
if v > θ and the negative class otherwise. The participants could optionally provide results
for nested subsets of features, varying the subset size by powers of 2 (1, 2, 4, 8, etc.).

Tscore: The participants were ranked according to the area under the ROC curve
(AUC) computed for test examples (referred to as Tscore), that is the area under the curve
plotting sensitivity vs. (1− specificity) when the threshold θ is varied (or equivalently the
area under the curve sensitivity vs. specificity). We call “sensitivity” the error rate of the
positive class and “specificity” the error rate of the negative class. The AUC is a standard
metric in classification. If results were provided for nested subsets of features, the best
Tscore was retained. There are several ways of estimating error bars for the AUC. We use a
simple heuristic, which gives us approximate error bars, and is fast and easy to implement:
we find on the AUC curve the point corresponding to the largest balanced accuracy BAC
= 0.5 (sensitivity + specificity). We then estimate the standard deviation of the BAC as:

σ =
1
2

√
p+(1− p+)

m+
+

p−(1− p−)
m−

, (1)

where m+ is the number of examples of the positive class, m− is the number of examples
of the negative class, and p+ and p− are the probabilities of error on examples of the
positive and negative class, approximated by their empirical estimates, the sensitivity and
the specificity (Guyon et al., 2006b).

Fscore: We also computed other statistics, which were not used to rank participants,
but used in the analysis of the results. Those included the number of features used by the
participants called “Fnum”, and a statistic assessing the quality of causal discovery in the
feature set selected called “Fscore”. As with the Tscore, we provided quartile feed-back

7. ”Faithfulness” roughly means that every conditional independence relation that holds in the population
is entailed to hold for all values of the free parameters.
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Table 2: Best scores of ranked entrants. The table shows the results of the best entries
of the ranked entrants and their corresponding scores: Top Tscore = area under
the ROC curve on test data for the top ranked entries ; Top Fscore = a measure
of “causal relevance” of the features used during the challenge (see text). For
comparison, we also include the largest reachable score, which was obtained by
including reference entries made by the organizers using knowledge about the true
causal relationships (Max Ts and Max Fs).

Dataset Top Tscore Max Ts Top Fscore Max Fs

REGED0 Yin-Wen Chang 1.000±0.001 1.000 Gavin Cawley 0.941±0.036 1.000
REGED1 Marius Popescu 0.989±0.003 0.998 Yin-Wen Chang 0.857±0.062 1.000
REGED2 Yin-Wen Chang 0.839±0.005 0.953 CaMML Team 1.000±0.153 1.000

SIDO0 J. Yin & Z. Geng Gr. 0.944±0.008 0.947 H. Jair Escalante 0.844±0.007 1.000
SIDO1 Gavin Cawley 0.753±0.014 0.789 Mehreen Saeed 0.724±0.007 1.000
SIDO2 Gavin Cawley 0.668±0.013 0.767 Mehreen Saeed 0.724±0.007 1.000

CINA0 Vladimir Nikulin 0.976±0.003 0.979 H. Jair Escalante 0.955±0.032 1.000
CINA1 Gavin Cawley 0.869±0.005 0.898 Mehreen Saeed 0.786±0.039 1.000
CINA2 Yin-Wen Chang 0.816±0.005 0.891 Mehreen Saeed 0.786±0.039 1.000

MARTI0 Gavin Cawley 1.000±0.001 1.000 Gavin Cawley 0.870±0.048 1.000
MARTI1 Gavin Cawley 0.947±0.004 0.954 Gavin Cawley 0.806±0.063 1.000
MARTI2 Gavin Cawley 0.798±0.006 0.827 Gavin Cawley 0.996±0.153 1.000

on Fnum and Fscore during the competition. For the Fscore, we used the AUC for the
problem of separating features belonging to the Markov blanket of the test set distribution
vs. other features. Details are provided on the web site of the challenge. As it turns out,
for reasons explained in Section 5, this statistic correlates poorly with the Tscore and, after
experimenting with various scores, we found better alternatives.

5. Result Analysis

5.1 Best challenge results

We declared three winners of the challenge:

• Gavin Cawley (University of East Anglia, UK): Best prediction accuracy on SIDO
and MARTI, using Causal explorer and linear ridge regression ensembles. Prize: $400.

• Yin Wen Chang (National Taiwan University): Best prediction accuracy on REGED
and CINA, using SVM. Prize: $400.

• Jianxin Yin and Zhi Geng’s group (Peking University, Beijing, China): Best
overall contribution, using Partial Orientation and Local Structural Learning (new
original causal discovery algorithm and best on Pareto front causation/prediction,
i.e., with smallest Euclidian distance to the extreme point with zero error and zero
features). Prize: free WCCI 2008 registration.

The top-ranking results are summarized in Table 2. Those are taken from the last entries
of the ranked entrants.8

8. This table reports the results published on the web site of the challenge, using the original definition of
the Fscore, whose effectiveness to assess causal discovery is questioned in Section 5.2.
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Following the rules of the challenge, the participants were allowed to turn in multiple
prediction results corresponding to nested subsets of features. The best Tscore over all
feature set sizes was then retained and the performances were averaged over all three test
sets for each task REGED, SIDO, CINA, and MARTI. In this way, we encouraged the
participants to rank features rather than select a single feature subset, since feature ranking
has a great practical interest for visualization, data understanding, monitoring easily the
tradefoff “number of features”/“prediction performance”, and prioritizing potential targets
of action. The entries of Gavin Cawley (Cawley, 2008) and Yin Wen Chang and Chih-Jen
Lin (Chang and Lin, 2008) made use of this possibility. They each won on two datasets
and rank second and third on the two others. Their average Tscore over all tasks is almost
identical and better than that of other entrants (see Figure 2-b).

The participants who used nested subsets had an advantage over other participants, not
only because they could make multiple submissions and be scored on the basis of the best
results, but also because the selection of the best point was made with test data drawn from
the post-manipulation distribution, therefore implicitly giving access to information on the
post-manipulation distribution. By examining the results and the “Fact Sheets”, we noticed
that most participants having performed causal discovery opted to return a single feature
subsets while those using non-causal feature selection performed feature ranking and opted
to return multiple predictions for nested subsets of features, therefore introducing a bias in
the results. To compensate for that bias, we made pairwise comparisons between classifiers,
at equal number of features (see details in Section 5.2). According to this new method
of comparison, Jianxin Yin and Zhi Geng’s group obtain the best position of the Pareto
front of the Fscore vs. Tscore graph (see Figure 2-b). Because of this achievement and the
originality of the method that they developed (Yin et al., 2008), they were awarded a prize
for “best overall contribution”.9 Also noteworthy are the performances of Vladimir Nikulin
(Suncorp, Australia), who ranked second on CINA and fourth on REGED and MARTI in
average Tscore, based on predictions made with a single feature subset obtained with the
“random subset method” (Nikulin, 2008). His average performances are as good as Jianxin
Yin and Zhi Geng’s group on average in the pairwise comparison of classifiers (Figure 2-b),
even though his average Fscore is significantly lower.

Also worthy of attention are the entries of Marc Boullé and Laura E. Brown & Ioannis
Tsamardinos, who did not compete towards the prizes (and therefore were not ranked),
identified as M.B. and L.E.B. & Y.T. in the figures.10 Marc Boullé reached Tscore=0.998 for
REGED1 and Laura E. Brown & Ioannis Tsamardinos reached Tscore=0.86 on REGED2.
Marc Boullé also reached Tscore=0.979 on CINA0 and Tscore=0.898 on CINA1. The entries
of Marc Boullé, using a univariate feature selection method and a näıve Bayes classifier
(Boullé, 2007a,b) were best on REGED0 and REGED1 and on CINA0 and CINA1. The
entry of Laura E. Brown & Ioannis Tsamardinos on REGED2 is significantly better than
anyone else’s and they are best on average on REGED. They use a novel structure-based
causal discovery method (Brown and Tsamardinos, 2008). Finally, Mehreen Saeed ranked

9. As explained in Section 5.2, the original Fscore had some limitations. In Figure 2 we plot the new Fscore
described in that section.

10. As per his own request, the entries of Marc Boullé (M.B.) were marked as “Reference” entries like those
of the organizers and did not count towards wining the prizes; Laura E. Brown and Ioannis Tsamardinos
(L.E.B. & Y.T.) could not compete because they are close collaborators of some of the organizers.
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fourth and sixth on SIDO and CINA, using a novel fast method for computing Markov
blankets (Saeed, 2008). She achieved the best Fscores on SIDO1&2 and CINA1&2.

All the top-ranking entrants we just mentioned supplied their code to the organizers,
who could verify that they complied with all the rules of the challenge and that their results
are reproducible (See Appendix).

5.2 Causation and Prediction

One of the goals of the challenge was to test the efficacy of using causal models to make good
predictions under manipulations. In an attempt to quantify the validity of causal models,
we defined an Fscore (see Section 2). Our first analysis of the challenge results revealed that
this score correlates poorly with the Tscore, measuring prediction accuracy. In particular,
many entrants obtained a high Fscore on REGED2 and yet a poor Tscore. In retrospect,
this is easily understood. We provide a simple explanation for the case of unsorted feature
sets in which, for REGED, the Fscore is 0.5(tp/(tp + fn) + tn/(tn + fp)), where tp is the
number of true positive (correctly selected features), fn false negative, tn true negative,
and fp false positive. REGED2 has only 2 causally relevant feature (direct causes) in the
manipulated Markov blanket; i.e., the Markov blanket of the test set distribution, which
is manipulated. Most people included these two features in their feature set and obtained
tp/(tp + fn) = 1. Since the number of irrelevant features is by comparison very large (of
the order of 1000), even if the number of wrongly selected features fp is of the order of 10,
tn/(tn + fp) is still of the order of 1. The resulting Fscore is therefore close to 1. However,
from the point of view of the predictive power of the feature set, including 10 false positive
rather than 2 makes a lot of difference. We clearly see that the first Fscore we selected was
a bad choice.

Definition of a new Fscore. We ended up using as the new Fscore the Fmeasure
for REGED and MARTI and the precision for SIDO and CINA, after experimenting
with various alternative measures inspired by information retrieval, see our justification
below. We use the following definitions: precision = tp/(tp + fp), recall = tp/(tp + fn)
(also called sensitivity), and Fmeasure = 2 precision recall / (precision + recall). Our
explorations indicate that precision, recall, and Fmeasure correlate well with Tscore for
artificially generated datasets (REGED and MARTI). The Fmeasure, which captures the
tradeoff between precision and recall, is a good measure of feature set quality for these
datasets. However, recall correlates poorly with Tscore for SIDO and CINA, which are
datasets of real variables with added artificial “probes”. In these cases, we approximate
the recall by the fraction of real variables recalled (present in the selected feature set),
which can be very different from the true recall that is the fraction of relevant variables.
For instance, if many real variables are irrelevant, a good causal discovery algorithm might
eliminate them, thus obtaining a poor estimated recall. Hence, we can only use precision as
of feature set quality for those datasets. A plot of the new Fscore vs. Tscore (Figure 2-a)
reveals that a significant correlation of 0.84 is attained (pvalue 2.10−19),11 when the scores
are averaged over all datasets and test set versions.

11. This is the pvalue for the hypothesis of no correlation. We use confidence bounds are based on an
asymptotic normal distribution of 0.5·log((1+R)/(1−R)), where R is the Pearson correlation coefficient,
as provided by the Matlab statistics toolbox.
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To factor out the variability due to the choice of the classifier, we asked several partici-
pants to train their learning machine on all the feature sets submitted by the participants
and we redrew the same graphs. The performances improved or degraded for some par-
ticipants and some datasets, but on average, the correlation between Tscore and the new
Fscore did not change significantly.12 See the on-line results for details.

Pairwise comparisons. In an effort to remove the bias introduced by selecting the
best Tscore for participants who returned multiple prediction results for nested subsets
of features, we made pairwise comparisons of entries, using the same number of features.
Specifically, if one entry used a single feature subset of size n and the other provided
results for nested subsets, we selected for the second entry the Tscore corresponding to n
by interpolating between Tscore values for the nested subsets. If both entries used nested
feature subsets, we compared them at the median feature subset size used by other entrants.
If both entries used a single subset of features, we directly compared their Tscores. For each
participant, we counted the fraction of times his Tscore was larger than that of others. We
proceeded similarly with the Fscore. Figure 2-b shows the resulting plot. One notices that
the performances of the winners by Tscore, Gavin Cawley and Yin-Wen Chang, regress in
the pairwise comparison and that Jianxin Yin and Zhi Geng’s group, Vladimir Nikulin, and
Marc Boullé (M.B.), appear now to have better predictive accuracy. Jianxin Yin and Zhi
Geng’s group stand out on the Pareto front by achieving also best Fscore.

5.3 Methods employed

The methods employed by the top-ranking entrants can be categorized in three families:

• Causal: Methods employing causal discovery technique to unravel cause-effect rela-
tionships in the neighborhood of the target.

• Markov blanket: Methods for extracting the Markov blanket, without attempting
to unravel cause-effect relationships.

• Feature selection: Methods for selecting predictive features making no explicit
attempt to uncover the Markov blanket or perform causal discovery.

In this section, we briefly describe prototypical examples of such methods taken among
those employed by top-ranking participants.

12. Computing these scores requires defining truth values for the set of “relevant features” and “irrelevant
features”. In our original Fscore, we used the Markov blanket of the test set distribution as set of
“relevant features”. For SIDO and CINA, there is only partial knowledge of the causal graph. The set
of “relevant variables” is approximated by all true variables and the probes belonging to the Markov
blanket (of the test set distribution). As an additional refinement, we experimented with three possible
definitions of “relevant features”: (1) the Markov blanket (MB), (2) MB + all causes and effects, and
(3) all variables connected to the target through any directed or undirected path. If the test data are
manipulated, those sets of variables are restricted to the variables not disconnected from the target as a
result of manipulations. We ended up computing the new Fscore for each definition of “relevant features”
and performing a weighed average with weights 3, 2, 1. We did not experiment with these weights, but
the resulting score correlates better with Tscore than when the Markov blanket of the test distribution
alone is used as reference “relevant” feature set. This is an indication that features, which are outside
of the Markov blanket may be useful to make predictions (see Section 6 for a discussion).
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(b) Pairwise comparisons

  

Gavin Cawley
Yin−Wen Chang
Mehreen Saeed
Alexander Borisov
E. Mwebaze & J. Quinn
H. Jair Escalante
J.G. Castellano
Chen Chu An
Louis Duclos−Gosselin
Cristian Grozea
H.A. Jen
J. Yin & Z. Geng Gr.
Jinzhu Jia
Jianming Jin
L.E.B & Y.T.
M.B.
Vladimir Nikulin
Alexey Polovinkin
Marius Popescu
Ching−Wei Wang
Wu Zhili
Florin Popescu
CaMML Team
Nistor Grozavu

Figure 2: Correlation between feature selection score and prediction. The new
feature selection score Fscore (see text) evaluating the accuracy of causal discov-
ery is plot as a function of the prediction accuracy score Tscore (the area under
the ROC curve for test examples). The relative Tscore is defined as (Tscore −
0.5)/(Max Tscore − 0.5). Both Tscore and Fscore are averaged over all tasks and
test set versions. (a) Ranking according to the rules of the challenge, selecting the
best Tscore for nested feature subset results. (b) Ranking obtained with pairwise
comparisons of classifiers, using the same number of features in each comparison.

Causal discovery: The top-ranking entrants who used causal modeling proceeded in
the following way: they used a “constraint-based method” to establish a local causal graph
in the neighborhood of the target, using conditional independence tests. They then ex-
tracted a feature subset from this neighborhood and used it to build a predictive model.
The predictive models used belong to the family of regularized discriminant classifiers and
include L1-penalized logistic regression, ridge regression, and Support Vector Machines
(SVM). These methods are described, see e.g., (Hastie et al., 2000). The feature subsets
extracted from the local causal graph differ according to the test set distribution. For unma-
nipulated test sets (sets numbered 0), the Markov blanket of the target is chosen, including
only direct causes (parents), direct effects (children), and spouses. For test sets drawn from
post-manipulation distributions (numbered 1 and 2), two cases arise: if the identity of the
manipulated features is known to the participants, the feature subset selected is a restriction
of the Markov blanket to parents (direct causes), unmanipulated children (direct effects),
and parents of at least one unmanipulated child (spouses). This is the case for REGED1
and MARTI1. If the identify of the manipulated features in unknown to the participants,
the feature subset selected is limited to direct causes. The techniques used to learn the local
causal graph from training data are all derived from the work of Aliferis and Tsamardinos
and their collaborators (Aliferis et al., 2003a; Tsamardinos and Aliferis, 2003; Aliferis et al.,
2003b). Gavin Cawley (Cawley, 2008) used directly the “Causal explorer” package provided
by the authors (Aliferis et al., 2003b). Laura E. Brown and Ioannis Tsamardinos (L.E.B. &
Y.T.) (Brown and Tsamardinos, 2008) improved on their own algorithms by adding methods
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for overcoming several simplifying assumptions like “faithfulness” and “causal sufficiency”.
They proposed to address the problem of faithfulness by using a method for efficiently se-
lecting product of features, which may be relevant to predicting the target, using non-linear
SVMs, and proposed to address the problem of violations of causal sufficiency and hidden
confounders by examining so-called “Y structures”. Jianxin Yin and Zhi Geng’s group (Yin
et al., 2008) also introduced elements of novelty by proceeding in several steps: (1) removing
features which are surely independent, (2) looking for parents, children, and descendants of
the target and identify all V-structures in the neighborhood of the target, (3) orienting as
many edges as possible, (4) selecting a suitable restriction of the Markov blanket (depending
on the test set distribution, as explained above), (5) using L1-penalized logistic regression
to assess the goodness of causal discover and eventually removing remaining redundant of
useless features.

Markov blanket discovery: Discovering the Markov blanket is a by-product of causal
discovery algorithms and can also sometimes be thought of as a sub-task. If known exactly,
the Markov blanket is a sufficient set of features to obtain best prediction results if the
test data are not manipulated. As explained in the previous paragraph, to remain optimal,
this feature set must be restricted in the case of manipulated test data to parents (direct
causes), unmanipulated children, and parents of unmanipulated children, or to only direct
causes (depending on whether the manipulations are known or not). Hence, using the
Markov blanket of the natural distribution for all test sets, including those drawn from
post-manipulated distributions, is in principle sub-optimal. However, several participants
adopted this strategy. One noteworthy contribution is that of Mehreen Saeed (Saeed, 2008),
who proposed a new fast method to extract the Markov blanket using Dirichlet mixtures.

Feature selection: There is a wide variety of feature selection methods, which have
proved to work well in practice in past challenges (Guyon et al., 2006a). They do not have
any theoretical justification of optimality for the causal discovery problem, except that in
some cases it can be proved that they approximate the Markov blanket (Nilsson et al., 2007).
Several participants used feature selection methods, disregarding the causal discovery prob-
lem, and obtained surprisingly good results. See our analysis in Section 6. The methods
employed belong to the family of “filters”, “wrappers” or “embedded methods”. Vladimir
Nikulin (Nikulin, 2008) uses a “wrapper” approach, which can be combined with any learn-
ing machine, treated as a “black box”. The method consists in sampling feature sets at
random and evaluating them by cross-validation according their predictive power using any
given learning machine. The features appearing most often in the most predictive subsets
are then retained. Yin-Wen Chang and Chih-Jen Lin (Chang and Lin, 2008), Gavin Cawley
(Cawley, 2008), and Jianxin Yin and Zhi Geng’s group (Yin et al., 2008) used embedded
feature selection methods relying on the fact that, in regularized linear discriminant classi-
fiers, the features corresponding to weights of small magnitude can be eliminated without
performance degradation. Such methods are generalizable to non-linear kernel methods via
the use of scaling factors. They include RFE-SVM (Guyon et al., 2002) and L1-penalized
logistic or ridge regression (Tibshirani, 1994; Bi et al., 2003). Marc Boullé (M.B.) uses a
univariate filter method making assumptions of independence between variables.
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Figure 3: Performance histograms. We show histograms of Tscore for all entries made
during the challenge. The vertical solid line indicates the best ranked entry
(i.e., best among the last complete entries of all participants). The dashed line
indicates the overall best, including Reference entries, utilizing the knowledge of
causal relationships not available to participants.
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5.4 Analysis by dataset

We show in Figure 3 histograms of the performances of the participants for all the entries
made during the challenge. We also indicate on the graphs the positions of the best entry
counting towards the final participant ranking; i.e., their last complete entry, and the very
best entry (among all entries including Reference entries made by the organizers.) As can
be seen, the distributions are very different across tasks and test set types. In what follows,
we discuss specific results.13

For the test sets numbered 0, the best entries closely match the best Reference en-
tries made by the organizers, who used knowledge of feature relevance not available to the
competitors. This is encouraging and shows the maturity of feature selection techniques,
whether they are based or not on the extraction of the Markov blanket. For two datasets
(REGED0 and CINA0), the univariate method of Marc Boullé (M.B.), which is based on
the näıve Bayes assumption (independence between features), comes ahead. This method
had already shown its strength in previous challenges on the Adult database based on census
data, from which CINA is derived. Interestingly, we know by construction of the REGED
dataset that the näıve Bayes assumption does not hold, and yet good performance was
obtained. This result is a nice illustration of the bias vs. variance tradeoff, which can lead
biased models to yield superior prediction accuracy when training data are scarce or noisy.
In this case, the multivariate methods of Yin-Wen Chang and Chih-Jen Lin (Chang and
Lin, 2008) for REGED0 and Vladimir Nikulin (Nikulin, 2008) for CINA0 have results which
are not significantly different from the univariate method of Marc Boullé.14 For SIDO0,
the best results achieved by Jianxin Yin and Zhi Geng’s group (Yin et al., 2008) are not
significantly different from the results of Gavin Cawley (Cawley, 2008), using no feature
selection. Generally, regularized classifiers have proved to be insensitive to the presence of
irrelevant features, and this results confirms observations made in past challenges (Guyon
et al., 2006a,b, 2008b). The best result for MARTI0 is also obtained by Gavin Cawley. His
good performance can probably be partially attributed to the sophistication of his prepro-
cessing, which allowed him to remove the correlated noise. In a post-challenge comparison
he conducted between a Markov blanket-based feature selection and BLogReg, an embedded
method of feature selection based on regularization, both methods performed well and the
results were not statistically significantly different, and interestingly the BLogReg method
yielded fewer features than the Markov blanket-based method.

For the test sets numbered 1 and 2, the distribution of test data differed from the train-
ing data. There is still on several datasets a large difference between the results of the best
entrants and the best achievable result estimated by the organizers, using the knowledge
of the true causal relationships. Sets 2 were more difficult than sets 1, for various reasons,
having to do with the type of manipulations performed. Rather surprisingly, for test sets 1,
non-causal methods yielded again very good results. Marc Boullé (M.B.) obtains the best
performances on REGED1, with his univariate method making independence assumptions
between features and involving no causal discovery. His feature set of 122/999 features

13. We account for the bias introduced by selecting for the best result when multiple predictions were
submitted for nested subsets of features by either reporting results of methods which submitted a single
feature subset, or reporting results of pairwise comparisons at equal number of features.

14. In the rest of this analysis, “not significantly different” means within one sigma, using our approximate
error bar of Equation 1.
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does not contain variables which are not predictive (i.e., not connected to the target in
the causal graph of the post-manipulation distribution), but in general there are very few
such variables. The best ranked competitor on REGED1, Marius Popescu, uses a partic-
ularly compact subset of 11 features, obtained with a causal discovery method combining
HITON-MB (Aliferis et al., 2003a), some heuristics to orient edges, and the elimination of
manipulated children and spouses whose children are all manipulated (see the Fact Sheet
for details). According to pairwise comparisons, the next best result is obtained by the
causal method of Laura E. Brown and Ioannis Tsamardinos (L.E.B. & Y.T.) (Brown and
Tsamardinos, 2008), with only 9 features. Their feature set does not coincide exactly with
the Markov blanket of the post-manipulation distribution (which includes 14 features), but
it contains no irrelevant feature. For SIDO1, the best performance is obtained with all or
nearly all features by Jianming Jin (Yin et al., 2008), Yin-Wen Chang (Chang and Lin,
2008), and Gavin Cawley (Cawley, 2008). Hence, even when manipulations are performed,
feature selection is so hard on this dataset that one is better off not doing any feature
selection. The best performing causal discovery method on this dataset is that of Jianxin
Yin and Zhi Geng’s group (Yin et al., 2008), but their performance is significantly lower
than that obtained with no feature selection (Tscore 0.70 instead of 0.75, with an error
bar of 0.01). For CINA1 and MARTI1, Vladimir Nikulin (Nikulin, 2008) obtains the best
performances with a feature selection method in pairwise comparisons (even though Gavin
Cawley comes ahead in Table 2). He uses 30/132 and 400/1024 features, respectively. His
fraction of irrelevant features in CINA1 is no better than the original proportion on the
entire feature set. Jianxin Yin and Zhi Geng’s group (Yin et al., 2008) are second best
on those two datasets, with performances which are not statistically significantly different.
Their causal discovery method yields fewer features (24/132 and 11/1024) and a smaller
fraction of irrelevant features. The next best entries include both causal and non-causal
methods. In conclusion, neither causal discovery methods nor feature selection methods
seem to come ahead on test sets 1. This result will be further discussed in Section 6.

For test sets 2, making good predictions without causal modeling was expected to be
significantly harder. Yet Jianxin Yin and Zhi Geng’s group (Yin et al., 2008) are the
only ones using causal discovery performing consistently well on sets 2. They are first or
second in pairwise comparisons for REGED2, SIDO2, and MARTI2. For REGED2, Laura
E. Brown & Ioannis Tsamardinos (L.E.B. & Y.T.) obtain the best performances with a
causal discovery method and for SIDO2, E. Mwebaze and J. Quinn perform best according
to pairwise comparisons, also using a causal discovery method. But, for MARTI2, none of
the other top-ranking entries (in pairwise comparisons) include causal discovery methods,
even though there is a very significant correlation between Fscore and Tscore (0.88). We
will discuss the case of MARTI2 in more detail in Section 6. On CINA2 all causal discovery
methods perform poorly, except that of Florin Popescu. However, since he submitted results
only on CINA, it is difficult to say whether he was lucky or has a causal discovery method
that is competitive on this problem. The other methods, which did well on CINA according
to pairwise comparisons are those of Marc Boullé (M.B.) (näıve Bayes) and Vladimir Nikulin
(feature selection with the random subset method). When selecting the best results in nested
subsets of features, Yin-Wen Chang obtained significantly better results than anyone else
with her SVM feature ranking. Her best feature set included only 4 features, which are all
“real” variables. The case of CINA will be further discussed in Section 6.
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6. Discussion

Several algorithms have demonstrated effectiveness of discovering causal relationships, as
indicated by the Fscore, hence this challenge contributed to demonstrating that causal
discovery from observational data is not an impossible task, albeit a very hard one. Yet
the performance of causal models on tasks that were purposely designed to demonstrate
their effectiveness is somewhat disappointing. It can be argued that causal discovery is
a relatively new domain of research, which has not yet reached the maturity of some of
the more mainstream machine learning techniques that were applied with success to the
challenge. In particular, the use of causal discovery software made freely available may not
be straightforward for people new to the field. However, we do not satisfy ourselves with
these easy explanations. In this section we analyze the results of the challenge in a critical
manner and invite researchers to further investigate some of the remaining open problems.

6.1 Correlation between causation and prediction in an interventional setting

One of our main motivation in organizing this challenge was to show evidence that causal
modeling is useful for making predictions in an “interventional setting” (a setting in which
the test set is distributed differently from the training set as a result of the intervention
of an external agent). Hence, in our analysis, we tried to quantify the correlation between
“causation” (the accuracy of the causal modeling around the target variable) and “predic-
tion” (the accuracy of the target variable predictions on test data). The former is captured
by the Fscore and the latter by the Tscore. After modifying the Fscore, and averaging over
all datasets and test set versions, we obtain a significant correlation between Fscore and
Tscore (pvalue 2.10−19). But, for individual tasks, there is a lot of variability. In past chal-
lenges (Guyon et al., 2006a,b, 2008b), it was already observed that feature selection does
not necessarily improve prediction accuracy when training and test data are drawn from the
same distribution. This is due to the fact that state-of-the-art regularized classifiers such
as SVMs, ridge regression, Random Forests (RF) and ensembles of neural networks, effec-
tively overcome the curse of dimensionality without requiring a dimensionality reduction
performed as preprocessing. In fact, feature selection is sometimes more harmful than useful
in this case. For example, the best result on SIDO0 is obtained with no feature selection
(in spite of the presence of irrelevant artificial variables or “probes”). More surprisingly, for
test sets 1 and 2, although there is a significant correlation between Fscore and Tscore (on
average over all tasks), we observe that feature selection methods based on causal discovery
methods rarely outperforms feature selection methods ignoring causal relationships.

In a recent analysis paper (Tillman and Spirtes, 2008), the authors investigate the total
contribution to prediction error made when non-causal methods use incorrect predictors for
a manipulated distribution and when causal methods use incorrect or biased parametric
constraints. They give theoretical conditions for manipulations where causal methods for
prediction should have no advantage over non-causal methods and for manipulations where
causal methods should produce considerably fewer errors. Briefly, the post-manipulation
distribution P (target |predictors) is identical to the natural distribution P (target |predictors)
only under special conditions, including that there is no manipulated direct effect of the
target in the predictor set. The most difficult cases for non-causal methods arise (1) when
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all variables are manipulated or (2) when the non-manipulated variables (other than the
target) are sampled before the effect of the manipulations have propagated.

Following this line of reasoning, we can partially explain why non causal methods per-
formed so well by examining our challenge design. We sampled the variables after the effect
of the manipulations propagated, because of the nature of our applications. Had we sam-
pled them before the effect of the manipulations propagated, we would have made the task
harder for non causal methods. Far fewer variables would have been predictive of the tar-
get, and, in particular, no consequence of the target would have been predictive. However,
this limitation of our design was partially compensated by manipulating a large number of
variables, including many direct effects of the target. Consequently, non causal methods
incurred a larger false positive rate than causal methods for test sets 1 and 2, because
many features relevant in the natural distribution were irrelevant in the post-manipulation
distribution.

In the next section, we propose another explanation, which sheds light on the difficulty
of improving performance with any kind of feature selection, causal or not.

6.2 It is more detrimental to omit good features than to include bad ones

We provide a qualitative explanation of why selecting a relatively large fraction of “irrel-
evant” features (including features relevant in training data and irrelevant in test data)
might not penalize as much predictions as omitting key “relevant” features, particularly for
test sets 0 and 1. The idea of our argument is that, in a predictive model, relevant vari-
ables tend to act in the same direction (to build the predictive signal) while, in the large
sample limit, irrelevant variables contribute signals which average out to zero. We base our
qualitative analysis on a simple model, assuming that all variables including the target are
binary (taking values ±1) and that we use a linear predictive model

v =
∑

i

wixi,

in which the weights are trained with “Hebb’s rule”

wi = (1/m)
∑

k

xk
i y

k,

where the index k runs over all training examples, and m is the number of training examples.
We further assume that the features are either perfectly relevant (identical to y or −y) or
perfectly irrelevant (random). We wish to compute the relative contribution of relevant
and irrelevant features to v in various cases to give insight into the number of irrelevant
features, which can be afforded, relatively to the number of good features selected. In all
cases, the magnitude (absolute value) of the weight of relevant features are:

wrelevant = 1.

Hence, the overall contribution of relevant features is he number of relevant or “good”
features:

vrelevant = ng.
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Table 3: Noise introduced by irrelevant features. We computed for a simple uni-
variate predictive model, the influence of relevant and irrelevant features. Both
features and target are binary, and it is assumed that all relevant features cor-
relate perfectly with the target and all irrelevant features are randomly drawn.
With 98% confidence, the magnitude of the feature weights are lower than the
value w quoted in the table and the total contribution

∑
i wixi is lower than the

v quoted. ng is the number of “good” (relevant) features and nb is the number of
“bad” (irrelevant) features, and m is the number of training examples.

Test set Type w relevant w irrelevant v relevant v irrelevant
Set 0 unmanipulated 1 1/

√
m ng

√
nb/m

Set 1 manipulated 1 1 ng
√

nb

Set 2 manipulated 1 1 ng nb

For irrelevant features, we first examine the case where training and test data are iden-
tically distributed (case 0). If the irrelevant features are drawn randomly with equal proba-
bility p = 0.5, then the expected value of the magnitude of the weights of irrelevant features
is 0. The standard deviation of the mean of xk

i y
k is

√
p(1− p)/m = 0.5/

√
m. To simplify

our calculation, we use 98% confidence intervals, which roughly correspond to 2 sigma error
bars by approximating the Binomial distribution with the Normal law. Hence, with 98%
confidence, the magnitude of the weights of irrelevant features is less than

w0
irrelevant = 1/

√
m.

We therefore verify that, for this model, the contribution of the irrelevant features vanishes
to zero in the large sample limit. Similarly, the test set values of xi are drawn randomly
with equal probability p = 0.5. Hence, the total contribution has mean 0, and standard
deviation bounded by w

√
nb p(1− p) = 0.5 w

√
nb, where nb is the number of irrelevant or

“bad” features and w is our bound on the weight magnitude: 1/
√

m. If we again choose a
98% confidence, we obtain a bound on the total contribution of the irrelevant variables of

v0
irrelevant =

√
nb/m.

In contrast, for test sets 1 and 2, in the worst case scenario, a feature perfectly rel-
evant with respect to the training data distribution and perfectly irrelevant in the post-
manipulated distribution will receive a weight of magnitude

w1
irrelevant = w2

irrelevant = 1.

In the scenario of test sets 1, values for such manipulated features are drawn randomly with
equal probability p = 0.5. Following a calculation previously done, the standard deviation
is bounded by w

√
nb p(1− p), but this time w = 1! The resulting bound on the total

contribution of the “bad” features is

v1
irrelevant =

√
nb,

with at least 98% confidence, because we assumed a worst-case scenario. For test sets 2,
adversarial values may be given to the manipulated features, i.e., opposite values than those
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expected from the training data distribution. So, in the worse case, the total contribution
of the bad features is

v2
irrelevant = nb.

The results of these calculations are summarized in Table 3. We see that for test
sets 0 the contribution of the irrelevant features can be very small compared to that of
relevant features. To evaluate the number of irrelevant features one can “afford” for a given
number of relevant features, we use the crossing point where the contribution of both type
of features is equal. We obtain, for test sets 0, nb = m n2

g, for test sets 1, nb = n2
g, and

for test sets 2, nb = ng. Plugging in some numbers, if there are of the order of ng = 30
relevant features and m = 500 training examples, one can afford for test sets 0 of the order
of nb = m · n2

g = 500 × 900 = 450, 000 irrelevant features. No wonder feature selection is
not all that important in that case. For test sets 1, it is not that critical either to filter
out irrelevant features, even if they are relevant in training data and manipulated in test
data. Plugging in some numbers, if there are of the order of ng = 30 relevant features,
we can afford of the order of nb = n2

g = 900 irrelevant features. This largely explains that
feature selection is more needed on sets 1 than on sets 0, but simple feature selection does
as well as causal feature selection. Finally, only in the worst case scenario of adversarial
manipulations (test sets 2), can we only afford a number of “bad” features of the same order
of magnitude of the number of “good” features.

The properties of irrelevant variables, on the basis of which we conclude that omitting
relevant variable might more severely impair performance than including irrelevant vari-
ables, are obviously distribution dependent, and a case-per-case analysis would be needed
to make a more quantitative assessment. We also need to caution against extrapolating our
qualitative explanations and concluding that there is no benefit to performing causal dis-
covery because of the relative insensitivity of certain regularized classifiers to the presence
of irrelevant features (those who have parameters acting as feature scaling factors). These
conclusions apply only to the particular tasks of the challenge and modifying the tasks may
yield different conclusions. For example, the problem of finding which variables are the
best targets of action to obtain a desired response requires a causal model. Also, we could
have made things more difficult to non-causal models by sampling before the effect of the
manipulations propagate to the non-target variables, thus making all consequences of the
target variable non-predictive. However, this would not have affected the performances for
test sets 2 in which all effect or all probes are manipulated.

6.3 Insignificant dependencies and spurious dependencies

We are left with explaining why for CINA2 and MARTI2 causal discovery methods do not
perform as well as expected.

For CINA, we attribute the problem to the variable coding, which diluted information
and let to many insignificant dependencies. By examining the features selected by regular
feature selection algorithms and by causal discovery algorithms, we noticed that they were
rather different. Feature selection algorithms select features that are individually very
predictive, but not part of the Markov blanket. This may be due to the coding of categorical
variables that we used: categorical variables taking c values were replaced by c binary
variables, implementing a complete disjunctive code 10...0, 01...0, etc. So for instance,
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“number of years of education”, which may be an ancestor variable of “profession”, is
individually more predictive than any of the individual professions: “clerical”, “managerial”,
etc. Verifications of this explanation are under way by examining the causal graphs inferred
by the top-ranking participants and the results will be published as part of the analysis of
the second causality challenge (Guyon et al., 2008a).

For MARTI2, the correlated noise was a considerable difficulty for causal discovery
algorithms, which did not perform well unless the noise was efficiently filtered. This is
confirmed by the fact that causal discovery methods did well on REGED, a noiseless version
of MARTI.

6.4 Is the Markov blanket truly optimal?

The above consideration on the relative insensitivity of predictive modeling to the presence
of “irrelevant” variables may not alone explain the good performances of feature selection
methods. It is possible that restricting the feature set to the Markov blanket of the test
set distribution hampered performances. This strategy was adopted by all the participants
performing causal discovery. If the causal paths to the target are not interrupted by the
manipulations, adding some predictive non-MB variables (like the light green nodes in
Figure 1) may help improving performances when a biased classifier is used, e.g., if the MB
is non-linearly related to the target and a linear classifier is used (Tsamardinos and Aliferis,
2003). Furthermore, the MB may include errors when estimated from a finite training set.
We noted in the above calculations that it is far more detrimental to omit relevant features
than include irrelevant features. Hence, subsets of larger size than the estimated MB are
likely to give better predictions. The strategy adopted by the participants performing causal
discovery was also sub-optimal in another respect: they selected a subset S of features
that should be predictive of the target Y in the post-manipulation distribution, then they
trained a “regular” learning machine to estimate directly P (Y |S) with training data from
the natural distribution. In some cases, this is not equivalent to estimating P (Y |S) in
the post-manipulation distribution by using a causal model. Cases of that sort arise when
one manipulates children of the target, which have unmanipulated children of the target
as descendants. For instance, in the LUCAS example of Figure 1, if we had manipulated
the variable “coughing”, but not the variable “fatigue”, both “fatigue” and “coughing”
would still be in the Markov Blanket of the post-manipulation distribution (“coughing”
would now be a “spouse” of the target), but the direct connection between the target and
“coughing” would be broken. Hence the contribution of “coughing” to P (Y |S) would be
over-estimated if P (Y |S) was estimated by a statistical learning machine trained from the
natural distribution, because this would include the direct effect of the target on “coughing”.
In contrast, a causal model taking into account the manipulations would factor out such
direct effect when estimating P (Y |S).

6.5 Lessons learned for future challenges

We would like to end this discussion with some comments on the challenge protocol. First,
as noted before, selecting the best Tscore in nested subsets of features introduced bias
in the results and we do not recommend using this paradigm in future challenges of this
kind. It is necessary to ask the participants to provide single predictions, or make pairwise

25



Guyon Aliferis Cooper Elisseeff Pellet Spirtes Statnikov

comparisons of performance at equal number of features. Second, in our setup, the target
variable is never manipulated. This makes sense for problems in which we are seeking to
discover causes of a given outcome in order to influence it. For example, in epidemiology, we
want to find risk factors of lung cancer such as smoking. But there are problems in which
the target variable is manipulated and the goal is to monitor the effects of the manipulation.
For example, the disappearance of symptoms can help monitoring the effect of a drug on
a disease. Third, in our setup, we perform manipulations and wait before we sample data,
until the effects of the manipulations have propagated through the system. In some cases,
it makes more sense to sample data before the manipulations are performed and ask the
question: what if we did these manipulations to given variables? Fourth, in our setup,
we ask the participants to make predictions of a target variable under manipulations of
other variables. Emphasis is put on prediction rather than on variable selection. Another
question would be to find those variables which should be manipulated to produce a given
desired effect, i.e., a given change in the target value. Finally, we posed a problem in which
causal models had to be inferred solely from observational data. In many cases, it is costly
but feasible to include manipulated data as part of training.

7. Conclusions

The first causality challenge we have organized allowed many researchers both from the
causal discovery community and the machine learning community to try their algorithms
on sizeable tasks of real practical interest. It reached a number of goals that we had
set to ourselves: familiarizing many new researchers and practitioners with causal discovery
problems and existing tools to address them, pointing out the limitations of current methods
on some particular difficulties, and fostering the development of new algorithms.

The setting of the challenge purposely resembled a classical machine learning competi-
tion, with a training set and a test set, with omitted labels, to encourage the participation of
data mining and machine learning researchers. The goal was to make optimum predictions
on test data, as measured by a Tscore (the area under the ROC curve on test data). Each
task had three test sets, with increasing levels of difficulty. The first one was identically
distributed as the training set. The two other test sets simulated manipulations by external
agents, and thus were not distributed like the training set. In this way we illustrated the ties
between causation and prediction under manipulations and gave an opportunity to causal
models using “causally relevant” features to perform better the regular statistical models on
manipulated test sets. We proposed a simple score to evaluate the causal relevance of the
subset of features selected, called Fscore. Several algorithms have demonstrated effective-
ness of discovering causal relationships, as indicated by a large Fscore. On average over all
datasets and tasks, the Fscore correlates significantly with the Tscore, confirming the link
between causation and prediction. As anticipated, non-causal feature selection methods
are doing well on the first type of datasets (training and test data identically distributed):
the bulk of them is close to optimal, so if you chose one method at random, you would do
well. However, for the other two types of datasets (test data manipulated) the distribution
of results is about uniform: if you chose one method at random, you would probably do
horribly. In addition, there is plenty of room for improvement to reach optimality. Thus,
non-causal feature selection methods are inappropriate for these tasks, despite the fact that
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some of them are top ranked and causal feature selection methods are still not mature and
robust enough to significantly outperform non-causal feature selection in the range of tasks
of the competition.

The results indicate that causal discovery from observational data is not an impossible
task, but a very hard one. This points to the need for further research and benchmarks.
This challenge investigated an important problem in causal modeling, but there remain
many other causal modeling and discovery issues to be explored. Future work includes
organizing challenges on a broader range of causal questions.
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Appendix: 
 
Verification of Challenge Results 
 
The rules of the challenge prohibited use of testing data for feature selection and building of the 
classifier model. However, all testing data with the exception of the response variable was 
available to the challenge participants. That is why we decided to verify several submissions 
from the challenge by studying and executing source codes of the participants on our computers. 
While doing this verification we paid close attention to ease of reproduction of the challenge 
results and involved computational resources. Such information will be very useful to 
practitioners who may decide to apply such algorithms to other datasets. 
 
We have selected 6 challenge participants that provided us with software and code for 
verification: Gavin Cawley, Yin- Wen Chang, J. Yin & Z. Geng Gr., L.E.B & Y.T., Vladimir 
Nikulin, and Mehreen Saeed. The base verification dataset was selected to be REGED due to its 
empirical difficulty in the challenge and requirement for causal feature selection. However, 
Vladimir Nikulin provided source codes only for CINA dataset and Mehreen Saeed provided 
codes only for CINA and SIDO datasets. Thus, we decided to use CINA dataset for verification 
of these two participants. Out of six selected participants, three (J. Yin & Z. Geng Gr., L.E.B & 
Y.T., Vladimir Nikulin) used algorithms for selection of a single feature set and the remaining 
participants (Gavin Cawley, Yin- Wen Chang, Mehreen Saeed) used techniques to selected 
nested subsets of features. 
 
The verification protocol consisted of two major steps: (i) manual reading of the source code to 
ensure that it does not employ testing data during feature selection and building of the classifier 
model and (ii) reproducing results of the challenge in a series of experiments. We considered the 
following experiments for versions 0, 1, and 2 of the datasets: 
 

Experiment Description 
1 Exact reproduction of the challenge submission 
2 Using reduced testing dataset with 500 samples (250 positives and 250 

negatives, selected at random) 
3 Using reduced testing dataset with 200 samples (100 positives and 100 

negatives, selected at random) 
4 Using reduced testing dataset with 500 samples, selected at random 
5 Using reduced testing dataset with 200 samples, selected at random 
6 Same as experiment 1 but with randomly permuted variables and samples 
7 Same as experiment 2 but with randomly permuted variables and samples 
8 Same as experiment 3 but with randomly permuted variables and samples 
9 Same as experiment 4 but with randomly permuted variables and samples 
10 Same as experiment 5 but with randomly permuted variables and samples 

 
Experiment #1 was designed to verify that the automated code of a participant matched the 
challenge entry in terms of classification AUC. Experiments #2-5 were primarily used to confirm 
that the challenge participant did not use testing data to make inferences about the distribution.  



GUYON ALIFERIS COOPER  ELISSEEFF PELLET SPIRTES  STATNIKOV 

 31

Experiment #6 was intended to illustrate that the code both does not rely on hard-coded feature 
indices and is not sensitive to the ordering of variables. Finally, experiments #7-10 were seeking 
goals of both experiments #2-5 and #6. 
 
First of all, our manual reading of the source codes confirmed that none of the selected challenge 
participants cheated by using testing data for training of the classifier or feature selection. 
 
Figure 1 and Table 1 report classification AUC’s for the above described experiments. The 
results for versions 0 of the datasets are not reported in Figure 1 because they have near-perfect 
reproducibility. In summary, the results of the selected challenge participants reproduced in all 
experiments. 
 
The code submitted by the team L.E.B. & Y.T. includes the automation of a step that during the 
competition was performed manually. The authors declared that the automated step is as close as 
possible to the subjective method used during the competition. An implementation of the strategy 
proposed by the authors is now fully automated and produces reproducible and repeatable 
results. 
 
In all experiments we used Xeon 2.8 GHz CPU’s with 4 Gb RAM. For the REGED dataset, the 
slowest algorithm was the one by Gavin Cawley with ttrain = ~20-30 hours and the fastest one 
was by Yin- Wen Chang with ttrain = 1-2 minutes. For all other methods in the REGED dataset, 
ttrain ∈ [15 minutes, 2 hours]. For the CINA dataset, all methods have ttrain < 1 hour. The testing 
time was negligible for all algorithms and datasets (ttest <2 minutes). All algorithms had 
relatively efficient implementations. The only exception is the code by Gavin Cawley that 
required >300 Mb for storage of the model for REGED datasets. Another inefficiency was 
observed in the code of Yin- Wen Chang that required ~4 Gb of RAM to apply a model to a 
testing set of 20,000 instances.  
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Figure 1: Testing set classification performance (measured by AUC) for 6 participants of the 
challenge. Each dot corresponds to results of an experiment.  
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Experiment Gavin Cawley Yin-Wen Chang J. Yin & Z. Geng Gr. L.E.B & Y.T. Vladimir Nikulin Mehreen Saeed
1 0.9997 0.9998 0.9998 0.9999 0.9770 0.9750
2 1.0000 0.9999 0.9998 0.9999 0.9812 0.9865
3 1.0000 1.0000 1.0000 1.0000 0.9512 0.9727
4 1.0000 0.9997 0.9997 0.9999 0.9752 0.9754
5 0.9983 0.9981 0.9997 0.9989 0.9805 0.9744
6 0.9998 0.9998 0.9998 0.9996 0.9760 0.9749
7 0.9998 1.0000 0.9999 0.9998 0.9741 0.9820
8 0.9997 0.9999 0.9996 0.9992 0.9622 0.9712
9 1.0000 1.0000 0.9999 0.9995 0.9709 0.9759
10 1.0000 1.0000 1.0000 1.0000 0.9682 0.9797

Challenge 
submission

0.9997 0.9998 0.9997 0.9998 0.9764 0.9751

Experiment Gavin Cawley Yin-Wen Chang J. Yin & Z. Geng Gr. L.E.B & Y.T. Vladimir Nikulin Mehreen Saeed

1 0.9787 0.9556 0.9442 0.9538 0.8549 0.8233
2 0.9789 0.9445 0.9392 0.9536 0.8532 0.8340
3 0.9825 0.9700 0.9490 0.9572 0.8742 0.8657
4 0.9907 0.9515 0.9478 0.9467 0.8366 0.8305
5 0.9905 0.9720 0.9362 0.9441 0.8206 0.8502
6 0.9469 0.9556 0.8943 0.9743 0.8542 0.8235
7 0.9463 0.9567 0.9125 0.9749 0.8552 0.8213
8 0.9506 0.9555 0.8888 0.9706 0.8746 0.8724
9 0.9378 0.9470 0.8947 0.9536 0.8497 0.8443
10 0.9653 0.9839 0.9042 0.9831 0.8769 0.8444

Challenge 
submission

0.9787 0.9556 0.9517 0.9673 0.8617 0.8248

Experiment Gavin Cawley Yin-Wen Chang J. Yin & Z. Geng Gr. L.E.B & Y.T. Vladimir Nikulin Mehreen Saeed

1 0.8045 0.8392 0.7926 0.8481 0.7159 0.6827
2 0.7984 0.8186 0.7626 0.8328 0.7401 0.7182
3 0.7897 0.8001 0.7660 0.8476 0.7367 0.7092
4 0.8218 0.7968 0.7448 0.8088 0.7238 0.7102
5 0.9025 0.9447 0.8850 0.9268 0.7088 0.6880
6 0.8237 0.8416 0.7896 0.8557 0.7180 0.6877
7 0.8218 0.8355 0.8019 0.8482 0.7271 0.7027
8 0.8413 0.8461 0.7968 0.8566 0.7258 0.6919
9 0.8555 0.8522 0.7715 0.8986 0.7398 0.7044
10 0.9395 0.9646 0.8503 0.9083 0.7377 0.6939

Challenge 
submission 0.8045 0.8392 0.7885 0.8600 0.7132 0.6867

REGED0

REGED1

REGED2 CINA2

CINA1

CINA0

 
Table 1: Testing set classification performance (measured by AUC) for 6 participants of the 
challenge.  


