
As technology development in the
biological sciences continues to rap-

idly evolve, more and more researchers
are presented with the challenge of ana-
lyzing and interpreting large amounts of
data as investigative technologies become
more efficient and high-throughput.
The genome sequencing projects, cou-
pled with technology advancements in
genomics and proteomics, have provided
scientists with the ability to cast a
genome-wide net and capture an
extraordinary amount of data about
their system of interest. Unfortunately,
few are prepared to fully appreciate data
on this scale, and furthermore, classical
statistical approaches are unable to
achieve power when applied to such data
sets since the number of potential factors
(e.g., observed genes, proteins, or genetic
variants) exceeds the number of samples

analyzed. Although the challenges asso-
ciated with the analysis of high-dimen-
sionality data have been well recognized
in various disciplines, biologists are just
beginning to embrace the massive
amount of data that is available from
studies utilizing modern genomic or pro-
teomic techniques. As shown in nearly
all manuscripts published utilizing these
techniques, a fractional percentage of
data obtained from genomic and pro-
teomic technologies is reported as
important to the question being ana-
lyzed. Methodologies to reduce the
dimensionality of the overall data set
(ranging typically from tens of thou-
sands to hundreds of thousands of pre-
dictor variables) down to a small, mean-
ingful, reliable, and comprehensive sub-
set that explains the hypothesis or condi-
tion being tested is a very active area of
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Data management has become an overwhelming task in the bio-
marker discovery field as technologies have become more efficient
and high-throughput.  Classical approaches fall short of providing
the necessary power to analyze the high-dimensionality data provid-
ed by modern genomics and proteomics studies.  Currently, efforts
are underway to reduce the dimensionality of the overall data set to
a small, meaningful subset that can comprehensively explain the
hypothesis being tested, while maintaining the integrity of the bio-
logical data itself.   
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research. These efforts have brought
together typically diverse disciplines of
mathematics, biology, computer science,
physics, and statistics with the underlying
goal of developing statistical and infor-
matic tools and methodologies to reduce
the dimensionality of the data to a level
meaningful to the researcher while main-
taining the integrity of the data in its bio-
logical context.

Effective identification of biomarkers
for any phenotype of interest, be it a dis-
ease, treatment response, or genetic alter-
ation, relies on effective experimental
design and the application of appropriate
data-processing techniques to yield a
meaningful data set. While a detailed
examination of these methodologies and
techniques is outside the scope of this
review, it is important to state that the
most effective experiments begin with a
hypothesis in a biological context fol-
lowed by designing a profiling experi-
ment around defined questions that can
be answered by the experiment. For
example, the design of an experiment to
identify a group of genes able to differen-
tiate adenocarcinoma from squamous
cell carcinoma in the lung (class discov-
ery/class prediction) (1) would be very
different than an experiment designed to
identify genes that are differentially
expressed in a single tissue of a mouse
model developed using transgenic tech-
nologies. The hypothesis of the experi-
ment and its appropriate design, as well
as sample consideration, are important at
the design stage when one considers the
resolution of the experiment. Using the
adenocarcinoma versus squamous cell
carcinoma example above, the number
of samples that would be required to
identify a classification and prediction
model is very likely to be significantly less

than the number of samples required to
not only classify the sample but also to
predict which patients within those sam-
ples will have a good versus poor prog-
nosis or a particular response to therapy.
Many such factors must be considered at
the outset of the profiling experiment,
often informed by preliminary experi-
ments, to maximize the likelihood that a
list of appropriate biomarkers predictive
or prognostic of the phenotype of inter-
est can be developed. Overall, the impor-
tance of appropriate experimental design
and the impact of normalization, signal,
and background filtering and overall sta-
tistical design cannot be overemphasized.
Two recent supplements and books (2-5)
offer excellent reviews of microarray
technologies applied to designing and
analyzing DNA microarray experiments
with themes that can be extended to
other profiling techniques.

The identification of biomarkers that
provide fundamental or key insight into
the understanding of complex disease is
often very challenging, even in the con-
text of genome-scale profiling experi-
ments. There is significant evidence that
the vast majority of complex diseases,
including cancer (6), are genetically
linked (7). Many of the diseases most
commonly reported in the popular press,
including heart disease, diabetes, and
obesity, are believed to have a complex
polygenic basis. Given the widespread
nature of polygenic diseases compared to
single gene diseases, such as cystic fibro-
sis, the potential impact on public health
is enormous. The fundamental problem
that many of the researchers leading
these efforts face is the inability of classi-
cal statistical approaches to achieve
power in the analysis of genome-scale
data sets. Invariably, the number of vari-
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ables being assayed vastly out numbers
the number of samples in the study. As
referenced above, this problem is not
unique to biological investigations.
Other disciplines that collect large
amounts of data on comparatively few
subjects are faced with the same chal-
lenges (e.g., text categorization, automat-
ed detection of epidemics, computation-
al biology, and analysis of complex and
time-evolving signals). Efforts in these
fields as well as in the field of bioinfor-
matics are beginning to provide methods
to effectively and efficiently meet these
challenges. The remainder of this brief
review will discuss recent work from our
group and others on methods that can be
applied to complex biological data sets to
identify key biomarkers that are inform-
ative for the phenotype of interest.

Genome scale profiling experiments
all have thousands of predictor variables
(or discriminatory features) and relative-
ly few individual samples. Developing
analysis models for such data structures
can be complicated and the computa-
tional methods required are often inten-
sive. Close on the heels of the first man-
uscripts describing the application of
microarrays to biological analysis came
several seminal papers describing dis-
crimination and cluster analysis methods
for RNA expression analysis (8-12).
Most of this work made use of various
clustering algorithms (agglomerative
hierarchical clustering, divisive k-means
clustering, or self-organizing maps) to
characterize individual samples, identify
patterns in the data, or discriminate
between samples. These clustering
methods, especially hierarchical, have
become almost synonymous with the
microarray literature and a red-green,
heat-map representation of differential

gene expression has become a widely
accepted method to illustrate patterns in
large amounts of data. However, none of
these early analysis techniques include
statistical methods for modeling gene
expression patterns. Significant work
done around the same time as the early
clustering work was aimed at assessing
parametric (13-15) and non-parametric
(16) models to address questions regard-
ing formal assessment of differences
between gene patterns or the fit of a spe-
cific model to the data. The application
of Bayesian approaches was quickly rec-
ognized as a powerful tool in the analysis
of high-dimensionality data. The value
of the Bayesian approach is further
emphasized given the high degree of
noise and variability often seen in
microarray data. In general terms,
Bayesian statistics can be described as a
method that predicts the probability of a
model based on the data. This is in con-
trast to frequentist or classical statistics
where probability is based on tests of sig-
nificance by supposing that a hypothesis
is true (the null hypothesis) and then cal-
culating the probability of observing a
statistic (i.e., a function of the data) at
least as extreme as the one actually
observed during hypothetical repeated
experiments (this is the P-value). In
other words, classical statistics gives the
probability of crucial aspects of the data
taking specific value ranges and assum-
ing a model, thus enabling rejection of
models - or model parameter values -
that have a small probability. Bayesian
approaches predict the probability of a
model (or of model parameters) given
the data. While a more detailed discus-
sion of the advantages of Bayesian
approaches in relation to biological data
is outside the scope of this review, we
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direct you to the following recent refer-
ences (15, 17-20).

Although genes are often named
based on a predicted role or function,
most genes are involved in multiple
pathways and this involvement may be
dynamic depending on tissue, develop-
mental time, or disease (21). Bayesian
decomposition has shown great promise
in elucidating these relationships using a
model based on prior information (that
can be continually added and modified
as more data is available) as genes are not
restricted to a single group and can be in
several groups simultaneously. This
application of Bayesian approaches
using a biological context to frame the
data analysis has shown great promise in
recent work and further strengthens the
potential of Bayesian approaches for
identifying biomarkers based on statisti-
cal models in a biological context by uti-
lizing networks of biological pathways
(22). The complexity of human genetic
networks makes this technique challeng-
ing, but also emphasizes the strength of
applying Bayesian decomposition
approaches to analyze data. The current
efforts to codify the mouse (23) and
human phenome (24) (a comprehensive
cataloging of physiological, anatomical,
and behavioral data) will provide a rich
data source for building biological mod-
els and using Bayesian methods to test
the validity of these models.

The data methods discussed so far are
by no means comprehensive. Many
other pattern recognition techniques
have been described for or applied to
microarray data sets over the past several
years. These include Genetic Algorithms,
Support Vector Machines, several types
of Neural Networks, Markov models,
and others. A review article by Valafar

describes these and other methods in
great detail (25). Although these pattern
recognition methods are excellent tools
for the analysis of genome-scale data sets,
most are complex to a novel user and can
be very computationally intensive. In an
effort to help overcome the steep learn-
ing curve in applying some of these
methods, the authors and their collabo-
rators have performed a comprehensive
evaluation of the major multicategory
classification algorithms (26) and based
on this evaluation, have developed a soft-
ware system that supports the effective
application of Support Vector Machine
approaches for novice users (27).
Additional work by our group and col-
laborators has described the application
of a Markov Blanket algorithm in an effi-
cient, stable, and novel manner for vari-
able selection from complex data sets
that can be applied to classification,
regression, and prediction studies (28).
Finally, another family of multivariate
analysis methods is based on Principle
Component Analysis (PCA). Such
methods have been applied to microar-
ray data with success (29). PCA, as a tool
to reduce the dimensionality of the over-
all dataset to a meaningful subset and
then apply gene annotations to that sub-
set using gene ontology terms, pathway
information, or information from the
previously mentioned phenome projects,
may be a promising means to identify
biomarkers from a biological perspective.

The purpose of this review was to
introduce and describe biomarker selec-
tion methods that extend beyond the
application of a t-test or basic ANOVA.
While these statistical methods are effi-
cient and effective in most contexts, it is
important to consider other potentially
more robust data analysis procedures
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Table I:

Supervised
Name Version Developer classification

ArrayMiner ClassMarker 5.2 Optimal Design, • K-Nearest Neighbors Y
Belgium • Voting

Avadis Prophetic 3.3 Strand Genomics, USA • Decision Trees Y
• Neural Networks
• Support Vector Machines

BRB ArrayTools 3.2 Beta National Cancer • Compound Covariate Predictor Y
Institute, USA • Diagonal Linear Discriminant

Analysis
• Nearest Centroid
• K-Nearest Neighbors
• Support Vector Machines

caGEDA (accessed 10/2004) University of Pittsburgh  • Nearest Neighbors methods Y
& University of Pittsburgh • Naïve Bayes Classifier

Medical Center, USA

Cleaver 1.0 (accessed 10/2004) Stanford University, USA • Linear Discriminant Analysis Y

GeneCluster2 2.1.7 Broad Institute,  • Weighted Voting Y
Massachusetts Institute • K-Nearest Neighbors

of Technology, USA

GeneLinker Platinum 4.5 Predictive Patterns • Neural Networks Y
Software, Canada • Support Vector Machines

• Linear Discriminant Analysis
• Quadratic Discriminant Analysis
• Uniform/Gaussian Discriminant

Analysis

GeneMaths XT 1.02 Applied Maths, Belgium • Neural Networks
• K-Nearest Neighbors
• Support Vector Machines

GenePattern 1.2.1 Broad Institute,  • Weighted Voting Y
Massachusetts Institute • K-Nearest Neighbors

of Technology, USA • Support Vector Machines

Genesis 1.5.0 Graz University • Support Vector Machines
of Technology, Austria

GeneSpring 7 Silicon Genetics, USA • K-Nearest Neighbors Y
• Support Vector Machines

GEPAS 1.1 (accessed 10/2004) National Center for • K-Nearest Neighbors
Cancer Research (CNIO), • Support Vector Machines

Spain • Diagonal Linear Discriminant
Analysis

MultiExperiment Viewer 3.0.3 The Institute for • K-Nearest Neighbors Y
Genomic Research, USA • Support Vector Machines

PAM 1.21a Stanford University, USA • Nearest Shrunken Centroids Y

Partek Predict 6.0 Partek, USA • K-Nearest Neighbors Y
• Nearest Centroid Classifier

• Discriminant 

Weka Explorer 3.4.3 University of Waikato, • K-Nearest Neighbors Y
New Zealand • Decision Trees

• Rule Sets
• Bayesian Classifiers
• Support Vector Machines
• Multi-Layer Perception
• Linear Regression
• Logistic Regression
• Meta-Learning Techniques
(Boosting, Bagging)
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Cross-validation Automatic model
for performance selection for classifier 

estimation & gene selection methods URL

Yes No http://www.optimaldesign.com/ArrayMiner

Yes No http://avadis.strandgenomics.com/

Yes No http://linus.nci.nih.gov/BRB-ArrayTools.html

Yes No http://bioinformatics.upmc.edu/GE2/GEDA.html

Yes No http://classify.stanford.edu

Yes No http://www.broad.mit.edu/cancer/software

Yes No http://www.predictivepatterns.com/

Yes No http://www.applied-maths.com/genemaths/genemaths.htm

Yes No http://www.broad.mit.edu/cancer/software

No No http://genome.tugraz.at/Software/Genesis/Genesis.html

Yes No http://www.silicongenetics.com

Yes Limited http://gepas.bioinfo.cnio.es/tools.html
(for number of genes)

Yes No http://www.tigr.org/software/tm4/mev.html

Yes Limited (for a single http://www-stat.stanford.edu/~tibs/PAM/
parameter of the classifier)

Yes Limited (does not allow  http://www.partek.com/
optimization of the choice

Analysis of gene selection algorithms)

Yes No http://www.cs.waikato.ac.nz/ml/weka/

Table 1 provides a summary of several multicategory selection tools, their capabilities, and a URL
for access to the tool.  Many of these software tools are designed to assist the novice user in
applying the classification method to their data set.  It is important to note that the applicability of
the tool from an experimental design perspective must be determined by the user.  Table 1
adapted from (27).
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that offer additional insight into the data
set being analyzed. These techniques are
often able to handle error, noise, or vari-
ability in the data more efficiently. For
example, consider a two-sample t-test
applied to a small data set (30) that then
ranks genes based on a test statistic or
corresponding P-value. This method
assumes that the gene expression values
are normally distributed and no correla-
tion exists among the genes. Testing cor-
rections can help with some of these
issues but the underlying result is that
the genes identified as most informative
are those that show the largest differen-
tial expression. When searching for
informative biomarkers for disease pre-
diction, classification, prognosis, or drug
target action or response, this assump-
tion must be carefully considered. In
nearly all cases, it is worth investigating
the application of one or more of the
techniques reviewed here. Table 1 pro-
vides a summary of several software
tools that implement many of the meth-
ods described here.

Particular experimental design criteria
and hypotheses will define when the tech-
niques are appropriate and they nearly
universally outperform more classical
methods. As profiling technologies con-
tinue to evolve and increase in complexi-
ty, comprehensiveness, and sensitivity,
more robust data analysis methods will
become more vital to the success of these
types of experiments. How the challenges
of this new level of data complexity will
be met will be an interesting and fertile
research area. As the complexity of
genomic data continues to increase, the
analysis methods must match the pace of
the technology in order to become a valu-
able tool in understanding the complexi-
ties of the human genome.
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