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a b s t r a c t

Optimization problems are encountered in all scientific disciplines and in many aspects
of everyday life. Application of established optimization methods assumes that an expert
can state the optimization problem correctly. Unfortunately, this is not the case in reality.
Below we consider how to help an expert state and solve optimization problems. The
proposed technique splits constraints of an optimization problem into ‘‘soft’’ (manageable)
and ‘‘rigid’’ constraints and modifies the ‘‘soft’’ constraints in an interactive mode with the
expert. The technique is illustrated with a numeric example devoted to the optimization of
a real-life nonlinear system.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The basic components of optimization problems include: design variablesα1, . . . , αr with design variable constraintsα∗j ≤
αj ≤ α∗∗j , j = 1, . . . , r; performance criteria Φν(α), ν = 1, . . . , k (goal functions that we seek to minimize) with criteria
constraintsΦ∗∗ν ≤ Φν(α); and functional dependencies fl(α), l = 1, . . . , t with functional constraints C

∗

l ≤ fl(α) ≤ C
∗∗

l [1–4].
Unlike criteria, functional dependences do not need to be optimized; we only need to satisfy their constraints.
All the above constraints define the feasible solution set(D), a region in the criteria and design variable spaces where the

optimal solutions should be sought. Determination of the feasible solution set is the essence of a problem statement. An
important subset of the feasible solution set contains solutions that cannot be improved by all criteria simultaneously and is
referred to as Pareto optimal solution set. In order to solve the optimization problem, one has to identify the Pareto optimal set.
Obviously, if the feasible solution set is not determined correctly, the resulting Pareto solutions cannot have practical value
because they were sought in the wrong place; furthermore many interesting solutions become unreasonably unfeasible.
The larger the number of performance criteria, the greater the amount of information obtained about resources of

improving an object and precision of themodel used to calculate criteria. Sincemany criteria are contradictory, definition of
criteria constraints represents significant, sometimes insurmountable difficulties. It is worthwhile to notice that numerous
attempts to reduce multicriteria problems to single-criterion ones have proved to be fruitless.
We recognize two types of functional constraints: ‘‘rigid’’ and ‘‘soft’’ (‘‘non-rigid’’). For example, standards are ‘‘rigid’’

functional constraints. These constraints are not supposed to be changed; they are specified in advance. On the other
hand, ‘‘soft’’ functional constraints (e.g. overall dimensions) can be changed, if these revisions lead to the improvement
of performance criteria. It is worthwhile to notice that in case of unjustifiably strong constraints on functional dependences,
many solutions can become unfeasible.
Design variables are changed within some specified boundaries. Quite often these boundaries can be revised, if it leads

to improvement of the values of the main criteria.
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In a traditional statement of optimization problems, constraints are usually given a priori. However, it is unlikely that such
constraints are correct, especially given high dimensionality of the problems and complexity of underlying models. That is
why it is necessary to ensure correctness of any given constraints. Otherwise, the optimization can lead to meaningless
results or equally to the loss of important solutions. As was mentioned above, established optimization methods do not
address the problem of definition of the feasible solution set.

2. Construction of the feasible solution set

2.1. Parameter Space Investigation (PSI method)

In order to construct the feasible solution set, a method called the Parameter Space Investigation (PSI) has been created
and successfully integrated into various fields of industry, science, and technology [1–5]. This method has been used in
designing the space shuttle, nuclear reactors, unmanned vehicles, cars, ships, metal-tools, etc. The PSI method performs
systematic investigation of the multidimensional domain by using uniformly distributed sequences. Among uniformly
distributed sequences known at present, the so-called LPτ sequences are among the best ones with regards to uniformity
characteristics, see [1–4]. Nets or quasi-random points can be also used in the PSI method [5,6]. The PSI method works as
follows: First, a computer generates design variable vectors. For the vectors that satisfy ‘‘rigid’’ functional constraints, the
values of criteria are computed. For each criterion, all the values are arranged in a test table in order (from best to worst
values). Second, one chooses preliminarily criteria constraints via dialogs with the computer. Third, the problem’s solvability
is verified: if vectors satisfying simultaneously all constraints are determined, the feasible solution set is nonempty, and the
problem is solvable. Otherwise, one has to either modify the values of constraints or return to the first step and increase the
number of trials. The procedure is iterated until the feasible solution set is nonempty. Finally, the Pareto set is constructed
and analyzed.
The empirical success of the PSI method [1–4] can be attributed primarily to the following two reasons: (i) the method

allows one to formulate and solve the optimization problem in a single process, and (ii) an expert is often ready to change
the constraints given that these changes lead to the improvement of the values of the main criteria.
While solving real-life optimization problems, experts often do not encounter serious difficulties in analyzing the Pareto

optimal set and in choosing the most preferred solution. This is because experts have a sufficiently well-defined system
of preferences1 in these types of problems, and the Pareto optimal set often contains a small number of solutions due to
stringent constraints.

2.2. ‘‘Soft’’ functional constraints and pseudo-criteria

In the traditional approach to multicriteria problems, one tries to reduce the number of criteria, replacing them with
functional dependences with given constraints. From the standpoint of our technique, it is necessary to act on the contrary.
In the case of unjustifiably strong constraints C∗l (C

∗∗

l ) on functional dependences, many solutions can become unfeasible.
For this reason the feasible solution set can bepoor or even empty. Therefore it is very important to help the expert determine
the ‘‘soft’’ functional constraints correctly.
Let us assume that fl(α) ≤ C∗∗l , l = 1, . . . , t , where C

∗∗

l are the ‘‘soft’’ constraints. The concept of pseudo-criteria is
presented as following: Instead of the function fl(α), we introduce an additional criterion Φk+l(α) = fl(α), which we call
a pseudo-criterion. To find the value of the constraint Φ∗∗k+l one has to compile a test table containing Φk+l(α). By using
the PSI method, one can define Φ∗∗k+l in a way that prevents the loss of interesting solutions. In general, when solving the
problemwith ‘‘soft’’ functional constraints, one has to find the set D, taking all performance criteria and pseudo-criteria into
account. In other words, one must solve the problem with the constraints Φν(α) ≤ Φ∗∗ν , ν = 1, . . . , k, k + 1, . . . , k + t .
Thus, to define the feasible solution set, we consider a multicriteria problem with k + t criteria. Notice, however, that the
pseudo-criteria are not considered when constructing the Pareto optimal set.
It is worthwhile to mention that many single-criterion problems have ‘‘soft’’ functional constraints as well. In these

cases, the definition of the feasible solution set is also very important. For determining this set, it is necessary to
represent respective dependencies as pseudo-criteria. In other words, we have to consider such single-criterion problems
as multicriteria ones. Test tables then will contain one performance criterion and the rest are pseudo-criteria.

3. Example

Below we illustrate by an example some aspects of constructing the feasible set using the PSI method. Consider a
statement of an optimization problem and the typical difficulties encountered by an expert at this stage [3]. Two iterations
of the statement and the solution of the problemwere performed. Each iteration was based on 1024 design variable vectors
generated with uniformly distributed sequences.

1 More complex cases of the decision making, where the preferences are not necessarily stable are discussed in [7].
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Fig. 1. Vibratory system.

3.1. Description of the vibratory system and initial statement of the optimization problem

The vibratory system consists of two bodies withmassesM1 andM2, see Fig. 1. ThemassM1 is attached to a fixed base by
a springwith stiffness coefficientK1. A spring-and-dashpot elementwith stiffness coefficientK2 and damping coefficient C
is located between massesM1 andM2. The harmonic force acts upon massM1. The amplitude and frequency of the exciting
force are identified as P = 2000 (N) and ω = 30 (s−1).
The motion of this system is governed by the equations:

M1X ′′1 + C(X
′

1 − X
′

2)+K1X1 +K2(X1 − X2) = P · cos(ωt) (1)
M2X ′′2 + C(X

′

2 − X
′

1)+K2(X2 − X1) = 0.

We treat the parametersK1,K2,M1,M2, and C as the design variables to be determined, i.e.

α1 = K1, α2 = K2, α3 = M1, α4 = M2, α5 = C .

The design variable constraints are prescribed as the parallelepipedΠ defined by the inequalities:

1.1× 106 ≤ α1 ≤ 2.0× 106 (N/m);

4.0× 104 ≤ α2 ≤ 5.0× 104 (N/m);
950 ≤ α3 ≤ 1050 (kg);
30 ≤ α4 ≤ 70 (kg);
80 ≤ α5 ≤ 120 (N s/m).

(2)

There are three functional dependencies with five constraints (on the total mass and on the frequencies):

f1(α) = α3 + α4 ≤ 1100.0 (kg);

33.0 ≤ f2(α) = p1 =
√
α1/α3 ≤ 42.0

(
s−1
)
;

27.0 ≤ f3(α) = p2 =
√
α2/α4 ≤ 32.0

(
s−1
)
.

(3)

The upper limits on the functions f2 and f3 are defined approximately and can be significantly modified. In other words, we
have two ‘‘soft’’ functional constraints f2(α) ≤ 42.0 and f3(α) ≤ 32.0; the rest of functional constraints f1(α) ≤ 1100.0,
33.0 ≤ f2(α) and 27.0 ≤ f3(α) are ‘‘rigid’’. According to the PSI method, in order to define ‘‘soft’’ constraints on functional
relations f2 and f3, the latter should be interpreted as the pseudo-criteria, i.e.Φ1 = f2 andΦ2 = f3.
The system is to be minimized with respect to the following four performance criteria:

◦ Φ3 = X1∂ (mm)—vibration amplitude of the first mass;
◦ Φ4 = M1 +M2 (kg)—metal consumption of the system;
◦ Φ5 = X1∂/X1st—dimensionless dynamical characteristic of the system, where X1st is the static displacement of mass M1
under the action of the force P;
◦ Φ6 = ω/p1—dimensionless dynamical characteristic of the system.

Because criteria are antagonistic, there are difficulties in defining the criteria constraints correctly.
Taking into account the aforesaid, we formulate the initial optimization problem. We have a vector of criteria

Φ = (Φ1,Φ2,Φ3,Φ4,Φ5,Φ6), (4)

on the basis of which test tables will be constructed and criteria constraints will be defined. Furthermore, we have design
variable constrains (2) and three ‘‘rigid’’ functional constraints

1100 ≥ f1(α), 33.0 ≤ f2(α) and 27.0 ≤ f3(α). (3a)
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Fig. 2. Initial problem statement (left column) and new problem statement (right column): Histograms of distribution of the feasible and Pareto optimal
solutions for the first (a), second (b), third (c), fourth (d), and fifth (e) design variables.

3.2. Definition of feasible and Pareto optimal sets in the initial problem statement

We carried out 1024 trials in a design variable space. Each trail point corresponds to the design variable vector. These
vectors were generated with uniformly distributed sequences (LPτ sequences). 765 vectors have satisfied given design
variable and ‘‘rigid’’ functional constraints. After dialogs of expert with computer, the criteria constraints were determined.
As a result, only 8 feasible solutions, including 6 Pareto optimal solutions, satisfied all constraints. The PSI method provides
information about the distribution of feasible solutions in design variable space via histograms [8]. The intervals of each
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Table 1
Definition of boundaries for the first, third and fourth design variables in the new problem.

Initial intervals of variation of design variables
(Initial Problem)

Subintervals where the feasible solutions belong
(Initial Problem)

New intervals of variation of design variables
(New Problem)

1.1× 106 ≤ α1 ≤ 2.0× 106 1.1× 106 ≤ α1 ≤ 1.17× 106 9.25× 105 ≤ α1 ≤ 1.25× 106

950 ≤ α3 ≤ 1050 951 ≤ α3 ≤ 975 920 ≤ α3 ≤ 985
30 ≤ α4 ≤ 70 42.7 ≤ α4 ≤ 60.35 40 ≤ α4 ≤ 65

design variable are divided into 10 identical subintervals, see Fig. 2. Above each subinterval, the number of feasible solutions
entering this subinterval is indicated. The region of the feasible solutions is marked with a red rectangle (Fig. 2).
The histograms show the range of change of each design variable and location of feasible solutions in the corresponding

intervals. In particular, feasible solutions for the first and third design variables are located in the left ends of the interval;
and for the fourth design variable they are located in the middle of the interval. On the other hand, the feasible solutions for
the second and fifth design variables are more or less uniformly distributed along the interval (Fig. 2, left column). Analysis
of the histograms allows correction of constraints, e.g. new constraints can be defined that correspond to intervals where
most feasible solutions belong. Other visualization tools for multicriteria analysis are described in [9].

3.3. New problem statement

Analyzing obtained results allowed us to change constraints for the first, third, and fourth design variables to focus on
the regions where most feasible solutions belong, see Fig. 2a, b, c and Table 1. The rest of the design variable, functional
and criteria constraints remained unchanged. Again, 1024 trials were conducted. As result, the number of feasible and a
Pareto optimal solutions has increased to 219 and 25, respectively. Histograms for the new problem are shown in Fig. 2
(right column).

3.4. Combined Pareto optimal set

Given results from the above two problem statements, the combined Pareto optimal set was defined on the combined
feasible solution set. The combined Pareto optimal set contains 25 solutions that belong only to the new problem statement.
Thus, all Pareto optimal solutions from the initial problem statement were improved. This emphasizes the sensitivity of the
feasible and Pareto optimal sets to changes in the constraints.

4. Conclusion

Correct determination of design variable, functional, and criteria constraints is amajor challenge in real-life optimization
problems. The most promising solution approach involves two stages. In the first stage, the feasible solution and Pareto
optimal sets are constructed and analyzed. These sets are constructed on the basis of the PSI method. Analysis of the feasible
solution set shows the work of all constraints; the cost of making concessions in various constraints, i.e. what are the losses
and the gains; expediency of modification of constraints; and resources for improvement of the object by all criteria. Only
after the first stage one canmake a decision as towhether it is necessary to improve the obtained results bymeans of various
optimization methods, including stochastic, genetic, and so on [10].
Finally,we refer the reader toworks [2–4,8,9] that discuss in detailmanagement of ‘‘soft’’ constraints in real-life problems

of design and identification of the automobile, airplane, ship, machine tools, nuclear reactor, multipurpose airspace systems,
and multistage axial flow compressor for the aircraft engine.
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