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Abstract

The majority of engineering problems are essentially multicriteria. These criteria are usually con-
tradictory. That is why specialists experience significant difficulties in correctly stating engineering
optimization problems, so designers often end up solving ill-posed problems. In general, it is impos-
sible to reduce multicriteria problems to single-criterion ones.

For the correct statement and solution of engineering optimization problems, a method called
Parameter Space Investigation (PSI method) has been created and widely integrated into various
fields of industry, science, and technology (e.g., design of the space shuttle, nuclear reactor, missile,
automobile, ship, and metal-tool). In summary, the PSI method generates many feasible designs from
which the so-called Pareto optimal ones (i.e. solutions which cannot be improved) are extracted. The
PSI method can also be used to efficiently optimize models in a parallel mode, which is of great
importance while solving high-dimensional multiparameter and multicriteria problems.

The PSI method is implemented in the software package Multicriteria Optimization and Vector
Identification (MOVI), a comprehensive system for multicriteria engineering optimization (design,
identification, and control). This system allows optimization of many problems that until recently
appeared intractable.
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1. Introduction

We discuss here the methodology of mathematical formulation and solution that can be
applied to the basic real-life optimization problems: design, identification, design of con-
trolled systems, operational development of prototypes, finite-element models, optimization
of large-scale systems, etc.

Many optimization methods are used for the search for optimal solutions. For example,
common techniques are nonlinear programming [1,3] and genetic algorithms [2,4]. When
such methods are applied, it is tacitly assumed that the user can correctly state the problem
and thus determine the feasible solution set. Unfortunately, this is not the case in reality.
Existing optimization methods are not designed to formulate the problem. Therefore, in the
majority of cases, the user ends up solving ill-posed problems.

The determination of the feasible solution set is a fundamental element in engineering
optimization. The Parameter Space Investigation (PSI) method is designed to determine the
feasible solution set and has been successfully applied to various fields of human activity
[5.6].

2. Formulation and solution of multicriteria optimization problems

For the detailed review of the PSI method, refer to [5,6]. Below, we discuss formulation
of the multicriteria optimization problem and summarize the main ideas of PSI method.

Consider an object described by a system of equations (e.g., differential, algebraic, etc.)
with some performance criteria. We assume that performance criteria of the object depend
on r design variables oy, . .., o, representing a point o = (a1, ... «) in the r-dimensional
space. In order to formulate a multicriteria optimization problem correctly, one has to impose
constraints on design variables, functions and criteria.

The design variable constraints can be written as ocjf Loj<at™, j=1,...,r. Incase
of mechanical systems, design variables o; can represent stiffness coefficients, moments
of inertia, masses, damping factors, geometric dimensions, etc. The constraints ocj‘ and ocj*
define a parallelepiped IT in the r-dimensional design variable space.

The functional constraints can be written in the form ¢} < fi (o) <c¢;*,I=1, ..., t, where
fi(2) is a functional dependency, ¢/ and ¢;* are some constants, and ¢ is the number of
functions.

We seek to minimize' local-performance criteria @, (o), v=1, ..., k. In order to avoid
situations when the values of certain criteria are inappropriate from the viewpoint of an
expert, criteria constraints must be introduced: @, (o) < @}*, where @}* is the marginal
value of a criterion @, (o) acceptable by an expert.

The functional dependencies f;(«) and the performance criteria @, () may be either
implicit or explicit functions of «. In other words, for some systems, we may know the
exact mathematical dependencies of f; and @, on «, whereas sometimes f; and @, act as
“black-boxes”.

1

'In the description of our methodology, we consider only the case of minimization; maximization works
similarly.



R.B. Statnikov et al. / Nonlinear Analysis 63 (2005) e685 —e696 e687

We would like to emphasize that the criteria constraints @} are usually determined dur-
ing the solution of the problem and, as a rule, can be repeatedly revised. The functional
constraints ¢;" and ¢;* are often rigidly specified and are constant (e.g., standards or specifi-
cations can be functional constraints). Some functional constraints, however, can be “soft”,
in a sense that they can change. We refer to the latter functional constraints as pseudocriteria.
Pseudocriteria are not considered while constructing Pareto optimal solutions.

All the constraints on design variables, functions, and criteria define the feasible solution
set D, D C II.

In the basic problems of multicriteria optimization, it is necessary to find aset P C D for
which @(P) = minycp P («), where @(a) = (P (), ..., D (x)) is the criterion vector and
P is the Pareto optimal set. We mean that @ (o) < @(f) if forallv=1, ..., k, @, () < Dy(p)
and for at leastone vo € {1, ..., k}, @y, () < Py, (). When solving the problem, one has
to determine design variable vector o € P, which is the most preferable among vectors
belonging to the set P.

The Pareto optimal set plays an important role in multicriteria engineering problems,
since this set can be analyzed more easily than the feasible solution set and it contains only
optimal solutions. The importance of Pareto optimal set is determined to a great extent by
the following theorem (proved in Ref. [5]):

Theorem. If feasible solution set D is closed and criteria ®,(x) are continuous, then the
Pareto optimal set is nonempty.

While solving problems with contradictory criteria (as is often the case for engineering
optimization problems), an expert cannot a priori formulate criteria constraints @}* cor-
rectly. The same is often true for pseudocriteria ¢;" and ¢;*. Furthermore, the determination
of design variable constraints (i.e., ocjf and ocj*), which are not specified rigidly, is a challeng-
ing task. The traditional optimization methods are not designed to solve the above problems
and thus fail to formulate the optimization problem correctly. In this sense, the key task of
proposed methodology is to formulate the optimization problem based on determination of
the feasible set D.

2.1. Parameter Space Investigation (PSI) method

The PSI method is based on the search of the parallelepiped IT with points of uniformly
distributed sequences (e.g., L P; sequences), pseudo-random uniform numbers, etc. (see
[5.6] for details). If the functional constraints ¢;' and ¢;*, [ =1, ..., are satisfied for
a vector of design variables o, we proceed to the computation of performance criteria
®,(ol), v=1, ..., k. The process of generating design variable vectors with the following
computation of functional constraints is repeated N times. We refer to N as the number of
trials.

The parameter (or design variable) space is investigated in three stages. In the first stage,
we construct fest tables by performing N trials and arranging the values of @,(a!), ...,
&, (o) in ascending order (assuming that all the criteria must be minimized). In the second
stage, an expert chooses preliminarily criteria constraints @3*, v=1, ..., k, which are the
maximum values of the criteria @, (), for which an acceptable level of the object’s perfor-
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mance is guaranteed. In the third stage, the problem’s solvability is verified. In other words,
the vectors o satisfying simultaneously all the inequalities &, (o) < oy v=1,...,k, are
determined. If the set of these vectors is nonempty, then the problem of construction of the
feasible set is solvable. Otherwise, one has to either modify the values of @}* or return to
the first stage and increase the number of trials (in order to repeat the second stage given a
larger test table). The procedure is repeated until D is nonempty and the maximum values
of @}* are determined. After that, the Pareto set is constructed and analyzed in accordance
with [5,6].

The above-described multicriteria problem can be viewed as the basis for analyzing
other engineering problems: design, identification, design of controlled systems, operational
development of prototypes, finite-element models, optimization of large-scale systems, etc.

2.2. Implementation of the PSI method

The PSI method is implemented in MOVI (Multicriteria Optimization and Vector Identi-
fication), a comprehensive software system for multicriteria engineering optimization. The
software package MOVl is designed to apply the PSI method to a wide range of engineering
problems.

For the PST method and MOVT to be successful when applied to real-life problems, the
software (and methodology) should scale to large systems with as many as thousands of
design variables and dozens of criteria. The software package MOVI allows to tackle these
problems in a parallel mode so that the desired number of trials N is distributed between k
computers (nodes). Thus, each node finds a feasible solution set for its own subproblem (by
conducting ~ N /k trials). Next, all feasible solution sets are combined and a single Pareto
optimal solution set is constructed.

In summary, the current version (1.3) of MOVI allows up to 51 design variables in
the problems with L Pt sequences and thousands of design variables with pseudo-random
number generators (RNG). The number of criteria to be optimized is limited only by the
computer’s processing power. The number of criteria reached many dozens when we solved
real-life problems (e.g., a 65-criteria identification problem of operational development of
a vehicle was solved by application of PSI method and is described in Ref. [5]).

The software package MOVl is also aimed at simplifying the interpretation of the results
of parameter space investigation and contains a number of visualization elements, such as
graphs, tables, and histograms. These elements allow the designer to (1) estimate depen-
dencies of criteria on the design variables and dependencies between criteria, (2) determine
significant criteria, (3) compare the values of criteria for a baseline design (prototype) with
the results obtained by the PSI method, and (4) judge whether it is advisable or not to correct
the initial statement of the problem and/or perform further trials to improve the results of
optimization. Below we describe four central elements of visualization.

2.2.1. Histograms of feasible solutions

Visualization of the distribution of feasible solutions over the design variable intervals
[ocj, of*], j =1,...,r is of great importance. In particular, the histograms show the role
of the functional and criteria constraints in the design variable space and allow designer to
correct the initial design variable constraints accordingly.
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2.2.2. Graphs criterion vs. design variable 1

After the analysis of the test table, the preference was given to design variable vector
o' . We fix all components of this vector except for one, oc’j, and find out how the criteria
@1, ..., D, change as the component oc’] varies in the initial interval [otj, ocjf*]. This analysis
is most frequently used for investigation of Pareto optimal solutions.

2.2.3. Graphs criterion vs. design variable Il

Assume that after N trials, N1 design variable vectors have entered the test table. We
consider projections of the points (@V(oci), o, ...,0),v=1,...,k,i=1,..., N1 onto
the plane @yaj, j =1, ..., r. These projections provide an expert with information about
dependencies of a criterion on design variables.

2.2.4. Graphs criterion vs. criterion

Again, assume that after N trials, N1 design variable vectors have entered the test table.
We consider projections of the points @V(ai), v=1,...,k,i=1,..., NI onto the plane
b, P,, where mand n € {1, ..., k}. These projections provide an expert with information
about dependencies between criteria.

3. Experiments: construction of the feasible sets
3.1. Two-mass dynamical system

In this example, we determine the feasible solution set of the two-mass dynamical system
shown in Fig. 1. The system consists of two bodies with masses M| and M;. The mass M
is attached to a fixed base by a spring with stiffness coefficient K. A spring-and-dashpot
element with stiffness coefficient K> and damping coefficient C is located between masses
M; and M. The harmonic force P - cos(wt) acts upon mass M. The amplitude and
frequency of the exciting force are identified as P = 2000N and @ = 30s~!. The motion
of this system is governed by the equations:

M X+ C(X| — X5) + K1 X1 + K2(X| — X2) = P - cos (wr),

MyXY 4+ C(X5 — X)) + Ka(X2 — X1) =0. )
K,
K
_/\/\/_ X
M[ M2 >
]
L
C
B
P cos (1)

Fig. 1. Two-mass dynamical system.
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We treat the parameters K1, K2, My, M>, and C as the design variables to be determined,
ie.,a; =Ky,ar = Kz, a3 = M1, ags = My, and a5 = C. The design variable constraints are
prescribed as the parallelepiped I defined by the inequalities:

1.1 x 10° <o <2.0 x 10° (N/m),

4.0 x 10*<ar <5.0 x 10* (N/m),

950 < o3 <1050 (kg),

30< g <70 (kg),

80 < o5 <120 (N's/m). 2

There are three functional constraints (on the total mass and the partial frequencies):

Ji(a) = o3 + 04 <1100 (kg),

3B fa(@) = pr= o /a3<42(7,

21< f3(0) = pr = Voo /s <32 (7). 3)

The upper limits imposed on the functions f>(«) and f3(o) are not rigid. For this rea-

son, the functional relations f>(«) and f3(o) are interpreted as pseudocriteria @1 and @3,
respectively. Thus, we have three functional constraints:

fi(o) = o3 + o4 <1100,

33< fa(o),

27< f3(a). 4)

We want to optimize the system with respect to the following four performance criteria:

@3 = X1p (mm)—vibration amplitude of the first mass;

@4 = My + M; (kg)—metal consumption of the system;

&5 = X 15/ X 15s—dimensionless dynamical characteristic of the system;
®¢ = w/pj—dimensionless dynamical characteristic of the system,

where X, is the static displacement of mass M under the action of the force P. Thus, we
have a vector of criteria @ = (@1, &2, O3, D4, 5, D¢), which will be used for construction
of the test tables.

3.1.1. Experiment 1: Is the statement of the problem correct?

We performed 1024 trials using L P, sequences and constructed the test table. 789 so-
lutions were included in the test table since they satisfied functional constraints. While
analyzing the test table, the following criteria constraints were formulated:

@} = 35.2008,
B3 = 36.9807,
P} = 8.4166,
@3 =1019.1211,
B2+ =18.795,

D = 0.9087. 5)
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Fig. 2. Histograms of the distribution of feasible solutions.
Table 1
Refining initial design variables constraints
Initial intervals of variation Subintervals where the New intervals of variation
of design variables feasible solutions belong of design variables
(Experiment 1) (Experiment 1) (Experiment 2)
1.1 x 100 <oy <2.0 x 100 1.1 x 100 <oy < 1.17 x 100 9 x 109 <oy < 1.2 x 100
950 < a3 < 1050 950 < o3 <975 850 < a3 <980
304 <70 42 <o <60.35 40< oy <64

Only eight solutions were found to be feasible (i.e. satisfied constraints (5)). Four out
of these feasible solutions are Pareto optimal solutions corresponding to trials #520, #336,
#672 and #288.

The analysis of histograms shows the effect of functional and criteria constraints (see
Figs. 2(a)—(d)). In particular, all feasible solutions for design variables «; and o3 are located
in the left ends of the intervals (Figs. 2(a),(b)). The feasible solutions for the design variable
oy are located in the middle of the interval (Fig. 2(c)). On the other hand, the feasible
solutions for oy and o5 are more or less uniformly distributed along the interval (see Fig.
2(d) for the histogram for as). These histograms were produced in MOVI using the option
Histograms of feasible solutions.

The analysis of histograms for design variables oy, o3, and o4 is summarized in Table
1. The first column of Table 1 lists the initial intervals of variation of o, a3, and oy. The
second column contains the corresponding subintervals, where the feasible solutions belong.
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Fig. 3. Dependencies of criteria on the design variable.

In order to improve obtained feasible solutions, an expert decided to redo the investigation
with the modified initial intervals of variation of design variables o, o3, and a4 (as shown
in the last column in Table 1) and initial intervals (i.e., as in (2)) for oy and as. This defines
a new parallelepiped I that was used for Experiment 2 (see Section 3.1.2).

Another important aspect of the analysis is to study the influence of design variables on
criteria. For example, Figs. 3(a)—(d) show dependencies of criteria @1, ®,, @3, and &g on
design variable o, respectively. We can conclude from the Figs. 3(a) and (d) that criteria
@ and Pg are controversial with respect to a. The criterion @3 is also dependent on o
(Fig. 3(c)), while the dependency of @, on «; is not obvious (Fig. 3(b)). These figures were
produced in MOVT using the option Graphs Criterion vs. Design Variable II. The feasible
and Pareto optimal solutions are circled in the figures.

In order to make decisions about the most preferable solution in Pareto set, it is necessary
to analyze dependencies between criteria (Fig. 4). For example, Figs. 4(a)—(c) show depen-
dencies between @1 and ¢, D3, and D;, respectively. Fig. 4(d) shows dependency between
@, and @3. These figures were produced in MOVI using the option Graphs Criterion vs.
Criterion. The feasible and Pareto optimal solutions are circled in the figures.

After the analysis of Pareto optimal solutions, an expert decided to use design variable
vector #288. Fig. 5 shows the dependencies of criteria on design variables for vector #288
(when one design variable is changing all the remaining ones are fixed). We can see that
criteria @1 and @3 are antagonistic with respect to o (see Figs. 5(a), (b), respectively).
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Fig. 4. Dependencies between criteria.

Similarly, criteria @] and ®¢ are antagonistic with respect to o3 (see Figs. 5(c), (d), respec-
tively). These figures were produced in MOVI using the option Graphs Criterion vs. Design
Variable 1. The feasible and Pareto optimal solutions are circled in the figures.

3.1.2. Experiment 2: Improving feasible solution set by changing initial intervals of
variation of design variables

In this experiment, we are seeking to improve the feasible solution set obtained in Ex-
periment 1 by using a new parallelepiped I1;. The functional and criteria constraints were
the same in both experiments. After 1024 tests using L P, sequences, the number of fea-
sible solutions is 258 (compared to 8 in Experiment 1), and the number of Pareto optimal
solutions is 25 (compared to 4 in the previous experiment). Next, we combined feasible
solution sets from both experiments (this option is also available in MOVI) and determined
Pareto optimal solutions on the combined feasible solution sets. The combined Pareto opti-
mal set contained only 25 solutions, and all of them were obtained in Experiment 2. Thus,
all solutions from Experiment 1 were improved as it follows from the definition of Pareto
optimal solution set.

3.1.3. Experiment 3: Improving feasible solution set by correcting functional constraints
After analysis of the table of functional failures (i.e., the list of designs which do not satisfy
functional constraints) obtained from Experiment 2, an expert agreed for a concession by



e694 R.B. Statnikov et al. / Nonlinear Analysis 63 (2005) e685—e696

¥\ Graph “Criterion Varsus Design Variable I ¥\ Graph "Criterion Versus Design Variable I*

Design vaisbie Citeron Rostrlomit U1 i) Design vavisble : T Teshons ]l Wsj®2 [
fiw =] [1-p | Fived vector. |28 B |l oew | (B =] [3ad =] Foedvector 228 = 3
Graph of Criterion 1 Graph of Criterion 3
Versus Design Variable 1 for veetor 2288 Versus Design Variable 1 fos vector 5288

1,300,000 1,400,000 1,500,000 1,500,000 1,700,000 1,500,000 1,300,000 200000 Lmé,aw 1,200,000 1300000 1400000 1,500,000 1,600,000 1,700,000 1,800,000 1300000 2,000,004

Design Varisbie 1 1 = Desin Varisble 1 (1 -
w-nicastic soutions W Fensiie solfons @ Pereln-optimal soltons I f = - P
(a) A Prototype. (b) A Prototype.

i3z D4 Weid iz hord R4

¥ Graph "Criterion Versus Design Variable I"
B AN &

s XAy —
Do sk ol Tetabom: [T to: [2 Desaiaiibe it Temsbem:  [1 o [3

=] =] [Tt =] Fredvector:  [228 [3-m =] [5-wien | Faedvecior [0 ]
Graph of Criverion 1 Graph of Criterion §

Versus Design Variable 3 for vector 288 Versus Design Variable 3 for vector 5263

850 £

ara 880 a0 1000 1010 100 1830 1840 1050 M__‘K P
Design Yariatie 3 (1 <1

0 90 1000 1010 1020 1030 1040 1,050
Desin Varisbie 3 (8. <1
==nfeastie sokibons B Feasble soktions @ Fareto-optimal sohdions I =infoacible coufions. M Feasbia solutions @ Parsto-optimal soludions
({_-) A Prototyns (d) & Prototype

RN T Y i 5
o 132 NDi6  NPiL

Fig. 5. Dependencies of criteria on design variables for Pareto optimal solution /#288.

changing functional constraints for f, and f3 from 33 < f> (), 27 < f3(), to 32.5< fa(o)
and 26.5 < f3(a). As aresult, the number of feasible and Pareto optimal solutions increased
to 282 and 26, respectively.

3.1.4. Commentary on expert’s behavior

Most often, an expert preliminarily agrees with modification of the initial statement of
the problem (e.g., by changing design variable, functional and criteria constraints). In other
words, an expert can be interested in how to modify constraints in order to improve the
values of criteria of interest. The final decision is made only after the analysis of obtained
results (i.e. by judging whether the obtained improvement of the main performance criteria
is worthy of concessions).

3.2. Multicriteria optimization of a large-scale system in parallel mode

Many engineering problems contain as many as hundreds and thousands of design vari-
ables. Below, we show how the proposed methodology tackles these problems in a parallel
mode by considering a hypothetical example of optimization of a large-scale system. Con-
sider a large-scale system with 1000 design variables. The design variable vector is given by
o=C(o1, ..., 01000), | <o; <2,i=1, ..., 1000. We are seeking to minimize simultaneously
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the following performance criteria @, (), v=1,...,4:
1000
&) = Z i s
1
1000 299
by = Z oclz — Z O(iz,
300 1
1000 299
D3 = (1400 Z ocl-z) — CcoSs <Z oc,-) ,
300 1
0 1000 >
D= Tl - (sin (Z u%)) . (6)
1 701

While analyzing the test tables, we formulated the following criteria constraints:

o @ <1502.2254,
o &) <930.4528,
o ¥y <0.1624,

o &y <10.3851.

We investigated the parameter and criteria space on four nodes simultaneously. Each node
conducted 50,000 trials using RNG. Totally, the four nodes conducted 200,000 trials, which
resulted in 4297 feasible solutions (1110, 1042, 1075, 1070 from the I, II, III, IV nodes,
respectively). The CPU time was approximately 8 h per node (platform: Intel Xeon 2.4 GHz,
2 GB RAM). After we combined 4297 feasible solutions, we obtained 326 Pareto optimal
ones (84, 78, 87, 77 solutions from the I, II, ITI, IV nodes, respectively). Further investigation
and solution of this problem can be carried out as in the example of the two-mass dynamical
system (Section 3.1).

4. Conclusion

The Parameter Space Investigation (PSI) method plays a crucial role in engineering
optimization in a sense that it guides the correct statement and solution of many engineering
problems. This method has been widely integrated into various fields of industry, science,
and technology [5]. The PSI method is implemented in the software package MOVI (which
can be executed on a standard PC running MS Windows), a comprehensive software system
that enables methodologically rigorous multicriteria analysis.

While working with applied problems of optimization (which are often ill-posed), it is
often necessary to reconsider initial intervals of variation of design variables, functional
and criteria constraints. Various elements of MOVI software package (such as test tables,
histograms of feasible solutions, graphs of dependencies of criterion vs. criterion and crite-
rion vs. design variable) allow an expert to (1) correctly construct the feasible solution set,
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(2) analyze obtained results, and (3) make a decision about the most preferable solution(s)
on the Pareto set. Such an analysis is necessary in order to obtain optimal solutions.

The ability to apply MOVI in a parallel mode can be used for multicriteria optimization
of many large-scale systems without decomposing their mathematical model into separate
subsystems. Given that many complex systems do not currently have known mathematical
models, application of MOVI in a parallel mode can be extremely helpful. In particular,
parallel computation can be used for the search for optimal solutions for automobiles,
planes, ships, machine tools, problems of WWW, and other multicriteria problems with
hundreds and thousands of design variables. Likewise, MOVI and PSI method can be
used in conjunction with the traditional methods for analysis of large systems involving
(1) decomposition of the system into subsystems, (2) optimization of subsystems, and (3)
aggregation of optimal subsystems. The parallel mode in MOVI also allows to decrease the
computation time and solve many problems that until recently appeared to be intractable.
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