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Abstract The majority of engineering optimization problems (design, identification,
design of controlled systems, optimization of large-scale systems, operational devel-
opment of prototypes, and so on) are essentially multicriteria. The correct determi-
nation of the feasible solution set is a major challenge in engineering optimization
problems. In order to construct the feasible solution set, a method called PSI (Param-
eter Space Investigation) has been created and successfully integrated into various
fields of industry, science, and technology. Owing to the PSI method, it has become
possible to formulate and solve a wide range of multicriteria optimization problems.
In addition to giving an overview of the PSI method, this paper also describes the
methods for approximation of the feasible and Pareto optimal solution sets, identifi-
cation, decomposition, and aggregation of the large-scale systems.
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1 Introduction

When addressing different methods of optimization in order to solve engineering op-
timization problems, it is usually assumed that these problems are defined correctly.
However, very often, this assumption is not true, especially if there is a set of contra-
dictory criteria. Therefore, in the overwhelming majority of cases, an expert ends up
solving ill-posed problems. In order to search for the best solutions, we first need to
define the feasible solution set. This task generally presents serious, at times insur-
mountable difficulties.

In Sect. 2 of this paper, we present the generalized formulation of multicriteria
optimization problems and the PSI method [1–7]. We show the necessity of the state-
ment and solution of real-life optimization problems in an interactive mode. We also
describe the approximation of the feasible solution set and Pareto optimal set and a
related issue of regularization of the Pareto optimal set [6]. In Sect. 3, we present
the statement and solution of the problem of vector identification of mathematical
models, as well as the assessment of adequacy of these models to real objects [1–3].
We also consider the problem of operational development of a prototype. Section 4
describes multicriteria optimization problems for large-scale systems. Specifically,
this section proposes constructing the feasible solution set of large-scale systems by
means of decomposition and aggregation of its subsystems [2, 3]. In Sect. 5, we
briefly discuss several of typical examples of real-life optimization problems that
have been solved by the PSI method [1–6]. These are problems of multicriteria opti-
mization [1–6] and vector identification [1]. The paper concludes with Sect. 6, which
implies that definition of the feasible solution set is the “heart” of the search for opti-
mal solutions of real-life optimization problems.

2 Multicriteria Design

2.1 Generalized Formulation of Multicriteria Optimization Problems

We discuss here a mathematical formulation that can be applied to the majority of
engineering optimization problems [1–5]. Let us consider an object, whose operation
is described by a system of equations (differential, algebraic, etc.) or whose perfor-
mance criteria may be directly calculated. We assume that the system depends on r

design variables or parameters (we use these two terms interchangeably) α1, . . . , αr

representing a point α = (α1, . . . , αr) of an r-dimensional space. It is common prac-
tice for α to appear in the aforementioned equations.

In the general case, when designing a machine, one has to take into account the
design variable constraints, the functional constraints, and the criteria constraints.

The design variable constraints (constraints on the design variables) have the form

α∗
j ≤ αj ≤ α∗∗

j , j = 1, . . . , r. (1)

In the case of mechanical systems, the αj represent the stiffness coefficients, the
moments of inertia, masses, damping factors, geometric dimensions, etc.
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First, we will consider these constraints, as well as the functional constraints to be
rigidly fixed.

The functional constraints may be written as follows:

C∗
l ≤ fl(α) ≤ C∗∗

l , l = 1, . . . , t, (2)

where the functional dependences fl(α) may be either functional, depending on the
integral curves of the differential equations mentioned previously, or explicit func-
tions of α (not related to the equations); and C∗

l and C∗∗
l are, respectively, the lower

and the upper admissible values of the quantity fl(α). The functional constraints can
specify the range of allowable stresses in structural elements, the track gauge, etc.

There also exist particular performance criteria, such as productivity, materials
consumption, and efficiency. It is desired that, all other things being equal, these
criteria, denoted by Φν(α), ν = 1, . . . , k, take the extreme values. For simplicity, we
assume that Φν(α) are to be minimized.

The constraints (1) single out a parallelepiped Π in the r-dimensional design vari-
able space (space of design variables). In turn, constraints (1) and (2) together define
a certain subset G in Π , whose volume may be assumed to be positive without the
loss of generality.

In order to avoid situations in which the expert regards the values of some criteria
as unacceptable, we introduce the criteria constraints

Φν(α) ≤ Φ∗∗
ν , ν = 1, . . . , k, (3)

where Φ∗∗
ν is the worst value of the criterion Φν(α) to which the expert may agree.

The choice of Φ∗∗
ν is discussed in what follows.

The criteria constraints differ from the functional constraints in that the former
are determined when solving a problem and, as a rule, are repeatedly revised. Hence,
unlike C∗

l and C∗∗
l , reasonable values of Φ∗∗

ν cannot be chosen before solving the
problem.

Constraints (1)–(3) define the feasible solution set D, i.e., the set of design solu-
tions αi that satisfy the constraints, and hence, D ⊂ G ⊂ Π .

If the functions fl(α) and Φν(α) are continuous in Π , then the sets G and D are
closed. Let us formulate one of the basic problems of multicriteria optimization. It is
necessary to find such a set P ⊂ D for which

Φ(P ) = min
α∈D

Φ(α), (4)

where Φ(α) = (Φ1(α), . . . ,Φk(α)) is the criterion vector and P is the Pareto optimal
set.

In other words, a point, α0 ∈ D, is called a Pareto optimal point iff there exists no
point α ∈ D such that Φν(α) ≤ Φν(α

0) for all ν = 1, . . . , k and Φν0(α) < Φν0(α
0)

for at least one ν0 ∈ {1, . . . , k}. A set P ⊂ D is called the Pareto optimal set iff it
consists of Pareto optimal points.

The Pareto optimal set plays an important role in vector optimization problems,
because it can be analyzed relatively easier than the feasible solution set and because,
by definition, the optimal vector always belongs to the Pareto optimal set, irrespective



358 J Optim Theory Appl (2012) 155:355–375

of the system of preferences used by the expert for comparing vectors belonging to
the feasible solution set.

It is worth noting that in the class of problems considered in this paper, the feasible
solution set does not contain many solutions due to the rigid functional and criteria
constraints. As a result, Pareto optimal set often contains very few solutions. Thus, we
approach these problems by constructing the set of Pareto optimal solutions. Alter-
natively, there are some situations, when one or few Pareto optimal solutions can be
obtained by optimizing some scalar function(s) and there may be no need for explicit
construction of the Pareto optimal set (e.g., in bilevel problems). The latter problems
are not considered here and are described in depth in [8].

2.2 Some Features of Engineering Optimization Problems

The engineering optimization problems considered in this work have the following
common features:

(1) The problems are essentially multicriteria ones.
(2) Determination of the feasible solution set is one of the essential issues of the

analysis of engineering problems. The construction of this set is an important
step in the formulation and solution of such problems.

(3) The formulation and solution of the problem make up a single process. Custom-
arily, the expert first formulates a problem and then a computer is employed to
solve it. However, in the case under consideration this approach is unsuitable.
The feasible solution set may be obtained only in the process of solution; there-
fore, the problems should be formulated and solved in an interactive mode. The
analysis of the feasible set is of importance for the experts.

(4) As a rule, mathematical models are complicated systems of equations (including
differential equations) that may be linear or nonlinear, deterministic or stochastic,
with distributed or lumped parameters. The coefficients of these equations are
parameters that can be varied within certain limits. Criteria are functions of these
parameters. That is why, we deal with two spaces: “parameter space” (or we call
it equivalently “design variable space”) and its image, “criteria space”. The latter
space is often also called “objective space”. The search for feasible solutions
in these problems is associated with the need to investigate the parameter and
parameter space.

(5) Very often, the experts do not encounter serious difficulties in analyzing the fea-
sible solution set and the optimal set and in choosing the most preferred solution.
They have a sufficiently well-defined system of preferences. Moreover, the afore-
mentioned sets usually contain a small number of elements [1, 2, 9, 10].

To formulate and solve engineering optimization problems, the Parameter Space
Investigation (PSI) method has been developed. A systematic and comprehensive
description of the method can be found in [1–6].

2.3 Search in Multi-dimensional Domains by Using Uniformly Distributed
Sequences

The features of the problems under consideration make it necessary to represent the
vectors α by points of uniformly distributed sequences in the space of design vari-
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ables [1, 2, 5]. In the following, we briefly consider this issue. H. Weyl was the first
to give the definition of uniformity [11].

Let us consider a sequence of points P1,P2, . . . ,Pi, . . . belonging to a unit r-
dimensional cube Kr . By G we denote an arbitrary domain in Kr , and by SN(G) the
number of points Pi belonging to G(l ≤ i ≤ N). A sequence (Pi) is called uniformly
distributed in Kr , iff

lim
N→∞

SN(G)

N
= VG, (5)

where V (G) is the volume of the r-dimensional domain G. If, instead of the unit
cube, a parallelepiped Π is considered, then the right-hand side of (5) transforms
into V (G)/V (Π).

The intuitive meaning of the definition is the following: for large values of N ,
the number of points of a given sequence belonging to an arbitrary domain G is
proportional to the volume V (G), i.e. SN(G) ∼ NV (G).

For many applied problems the following situation is typical. There exists a multi-
dimensional domain in which a function (or a system of functions) is considered,
whose values may be calculated at certain points. However, there is no sufficient
information on the properties of the functions (criteria) under consideration, for ex-
ample, about the order of their smoothness. In these cases, it is not possible to use
the methods of searching for the optimal solutions, such as the gradient methods.
Therefore, our approach consists of computing the performance criteria for sets of
parameters (points), which are uniformly distributed in the domain of these criteria.
Then, owing to the continuity of the criteria, which is typically the case, we will
have information on the criteria in a neighborhood of each of these points. If there
are enough points to cover, with their neighborhoods, all area under investigation
(with satisfactory degree of approximation), then we will have full information on
the values of criteria, and will be able to optimize them. If, when solving a practical
problem, it is possible to calculate the system at N points, then (on the basis of the
above) it is important that these points be distributed as uniformly as possible. Then
the issue of choosing the best of all known uniformly distributed sequences can arise.

Prior to solving a specific problem, one cannot say with certainty which of the
uniformly distributed sequences are most suitable. Much depends on the behavior of
the criteria, the form of the functional and the design variable constraints, and the
geometry of the feasible solution set. As was already mentioned, when solving prac-
tical problems, it is possible to compute the performance criteria only for a limited
number of points defined by specific features of the problem. Therefore, the unifor-
mity of an initial segment of the sequence is important. However, for small lengths of
this segment, the property of uniformity of the sequence under consideration is not
always apparent. The last circumstance complicates the effective utilization of one or
another sequence. Therefore, when solving practical problems, any of the uniformly
distributed sequences that are available today can be used with approximately equal
efficiency. In this connection, it is appropriate to mention the works by J.H. Hal-
ton [12], J.M. Hammersley [13], E. Hlawka and R. Taschner [14], H. Faure [15],
H. Niederreiter [16], J. Dick and H. Niederreiter [17], as well as the so-called LPτ

sequences [5] and new Pτ nets [2]. In all examples presented in this paper, points
Q1,Q2, . . . ,Qi, . . . of the LPτ sequences were used.
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2.4 The Parameter Space Investigation Method for Formulating and Solving
Engineering Optimization Problems

Construction of the feasible solution set is essential for problems of this class. The
feasible set, in its turn, depends on the correct definition of the criteria constraints
Φ∗∗

ν . The values of these constraints must be a maximum over all possible feasible
values of the respective criteria (since we seek to minimize criteria). Otherwise, since
the criteria may be contradictory, and many feasible solutions may be lost. Thus, the
solution of a multicriteria optimization problem to considerable extent is reduced to
the correct definition of Φ∗∗

ν . Now we briefly proceed by describing the Parameter
Space Investigation method, which allows correct determination of Φ∗∗

ν and, hence,
of the feasible solution set.

Earlier we formulated the problem of multicriteria optimization and defined the
feasible solution set D, which is constructed using the values of Φ∗∗

ν , ν = 1, . . . , k

and some other constraints.
The PSI method involves the following three stages [1–6].

Stage 1 For each of the N points of the sequence uniformly distributed in Π , we
calculate the system to be designed and check the functional constraints (2). If they
hold, then the point α = αi is selected as a trial point in G and all Φν(α) are cal-
culated; otherwise, the point α = αi is discarded.1 Then the test table is formed
for each criterion. The values Φν(α

1), . . . ,Φν(α
N) in this table are arranged in the

increasing order (if we seek to minimize Φν(α)).
Stage 2 This stage assumes interaction with an expert. Looking consecutively at each

of the tables, the expert should define the greatest feasible value Φ∗∗
ν for each crite-

rion.
Stage 3 Given the constraints Φ∗∗

ν , we construct the set D. By calculating the values
of all criteria at the points αi1, . . . , αis , one can readily verify if, among these points,
there is at least one that led to satisfaction of all inequalities (3). All such points αij

form the feasible set D, and the problem (4) becomes solvable. Let the feasible set
and the Pareto optimal set be constructed. Suppose that the expert found it possible
to choose a new constraint Φ

∗∗
ν > Φ∗∗

ν for some criterion. This is the case when Φ∗∗
ν

is not the maximum feasible constraint. Since we already have computed the test ta-
ble, we can readily construct the new feasible set and the new Pareto optimal set that
correspond to all constraints Φ

∗∗
ν . This would require only calculations for the new

values for the criteria. If the updated Pareto optimal set contains solutions that sub-
stantially improve the solutions from the Pareto optimal set constructed previously
(for constraint Φ∗∗

ν ), then the expert, based on the analysis of the results obtained,
makes a final decision whether it is worth adopting the new values or retaining the
old ones for the criterion constraints.

In practice, the expert imposes the criteria constraints in order to improve a pro-
totype with respect to all criteria simultaneously. If it is impossible, he improves a
prototype with respect to the most important criteria. In the process of dialogues with

1After the analysis of the test tables and the correction of the functional constraints, some of the unfeasible
solutions can become feasible ones [1, 7].
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a computer, the expert repeatedly revises the criteria constraints and carries out the
multicriteria analysis. The PSI method gives the expert valuable information on the
advisability of revising various criteria constraints with the aim of improving the ba-
sic criteria. The expert sees what price one pays for making concessions in various
criteria, i.e., what one loses and what one gains.

After analyzing P , the expert finds the most preferred solution Φ(α0). As already
noted, for the problems under consideration, experts do not have serious difficulties
in analyzing the Pareto optimal set and in choosing the most preferred solution. Thus,
the PSI method has proved to be a very convenient and effective tool for the expert,
primarily because this method can be directly used for the statement and solution of
the problem in an interactive mode.

2.5 The Complexity of the Investigation

The property of uniform distribution of points implies that γ = V (D)/V (Π) ≈
ND/N for sufficiently large N . Here N is the number of points αi ∈ Π ; ND is the
number of points that have entered the feasible solution set; V (D) is the volume of
the feasible solution set; V (Π) is the volume of the parallelepiped Π . The ratio of
the volumes γ in the Monte Carlo Theory is called the selection efficiency. For many
engineering problems, γ 
 0.001; therefore, the search for feasible solutions is like
looking for a “needle in a haystack”; e.g., see [1, 2, 5, 9, 18]. In fact, γ characterizes
the complexity of solving problems. Very often, after correction of constraints, the
value of γ vastly increases. The number of tests in the real-life problems strongly
depends on how close to “correct” the initial statement of a problem is.

When the PSI method is used, the majority of computer time is spent on determin-
ing the feasible solution set and the correction of the problem statement that eventu-
ally leads to obtaining the justified optimal solutions. The PSI method has proved to
be a very convenient and effective tool for the expert, primarily because this method
can be used for the statement and solution of the problem in an interactive mode.

2.6 “Soft” Functional Constraints and Pseudo-Criteria

For many practical problems, ‘good’ solutions that lie slightly beyond the limits im-
posed by the constraints can be found [1, 2, 5]. If the expert is informed of this, in
some cases he will be ready to modify the constraints, so that the ‘good’ solutions will
belong to the feasible solution set. The question is how to obtain such information.

Instead of the function fl(α), whose constraints C∗
l and C∗∗

l are not rigid (i.e., are
“soft”), we introduce an additional criterion Φk+l (α) = fl(α), which we will call a
pseudo-criterion. However, to find the value of Φ∗∗

k+l one has to compile a test table
containing Φk+l(α). By using the aforementioned algorithm, together with the new
test table, one can define Φ∗∗

k+l in a way that prevents the loss of interesting solutions.
Strange as it may seem, when solving single-criterion engineering problems in-

volving soft functional constraints, one has to use multicriteria formulations in order
to find the feasible solution set. This is because Φ∗∗

ν may be determined correctly
only upon analyzing the test table. In the general case, in solving a problem with soft
functional constraints, one has to find the set D taking all performance criteria into
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account, the functions fl(α) being considered as pseudo-criteria. In other words, one
has to solve the problem with the constraints

Φν(α) ≤ Φ∗∗
ν , ν = 1, . . . , k, k + 1, . . . , n.

It has already been mentioned that, in order to avoid ‘multicriteriality’, attempts
were made to transform all criteria but one into functional dependences with con-
straints of the form (2). It is clear that one cannot proceed in this way, because it can
lead to a considerable reduction in the feasible solution set. Whenever possible, the
expert has to do just the opposite, viz., to transform the functional dependences into
pseudo-criteria and then reduce the problem solution to the analysis of the test table.

The possibility of using pseudo-criteria is an important advantage of the PSI
method. First, in many cases this allows us to choose functional and design variable
constraints justifiably rather than arbitrarily. Second, as the number of constraints
decreases, the volume of the domain G increases.

Finally, after the test tables that contain both criteria and pseudo-criteria have been
constructed, only performance criteria are used in searching for the Pareto optimal
solutions.

2.7 MOVI Software System and Visualization Tools

The test tables are the basis of the PSI method and MOVI software system that we
have co-authored [7, 9, 19, 20]. Visualization tools that help identify and analyze the
feasible solution set play an important role in MOVI. First of all these are design
variable histograms (histograms of the distribution of the feasible solution set), cri-
teria histograms, the table of functional failures, and graphs “criteria versus design
variables” and “criteria versus criteria”. Using these tools interactively, the expert vir-
tually always corrects the initial statement of the problem, including constraints and
the mathematical model itself.

2.8 Approximation of the Feasible Set

We have introduced the notion of a feasible solution in the multicriteria optimization
problem. The algorithm discussed above allows simple and efficient identification
and selection of feasible points from the design variable space. However, the follow-
ing question arises: how can one use the algorithm to construct a feasible solution
set D with a given accuracy? The feasible set is constructed by singling out a sub-
set of Φ(D) that approximates any value of each criterion in region Φ(D) with a
predetermined accuracy [6].

Let εν be an admissible (in the expert’s opinion) error in criterion Φν . By ε we
denote the error set {εν}, ν = 1, . . . , k. We will say that region Φ(D) is approximated
by a finite set Φ(Dε) with an accuracy up to the set ε, if for any vector α ∈ D, there
can be found a vector β ∈ Dε such that

∣
∣Φν(α) − Φν(β)

∣
∣ ≤ εν, ν = 1, . . . , k.
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We assume that the functions we shall be operating with are continuous and satisfy
the Lipschitz condition (L) formulated as follows: for all vectors α and β belonging
to the domain of definition of the criterion Φν , there exists a number Lν such that

∣
∣Φν(α) − Φν(β)

∣
∣ ≤ Lν max

j
|αj − βj |.

It follows that there exists L′
ν such that

∣
∣Φν(α) − Φν(β)

∣
∣ ≤ L′

ν

r
∑

j=1

|αj − βj |.

We will say that a function Φν(α) satisfies the special Lipschitz condition (SL) iff
for all vectors α and β there exist numbers L

j
ν , j = 1, . . . , r such that

∣
∣Φν(α) − Φν(β)

∣
∣ ≤

r
∑

j=1

Lj
ν |αj − βj |,

where at least some of the L
j
ν are different.

Let [Lν] (or [∑r
j=1 L

j
ν ]) be a dyadic rational number exceeding Lν (or

∑r
j=1 L

j
ν )

and sufficiently close to the latter, and let [εν ] be the maximum dyadic rational num-
ber that is less than or equal to εν and whose numerator is the same as that of [Lν]
(or [

∑r
j=1 L

j
ν ]). A dyadic number is a number of the form p/2m, where p and m are

natural numbers.

Theorem 2.1 If criteria Φν(α) are continuous and satisfy either the Lipschitz con-
dition or the special Lipschitz condition, then to approximate Φ(D) to within an
accuracy of ε it is sufficient to have

max
ν

2τ

( [Lν]
[εν]

)r

or max
ν

2τ

( [∑r
j=1 L

j
ν ]

[εν]
)r

points of the Pτ net.

The proof is given in [21]. We note that τ increases with r . For details on τ ,
see [22].

Note that similar estimates for problems of finding the absolute extremum of func-
tions satisfying the Lipschitz condition have been obtained in a number of works by
alternative methods. For example, a similar estimate was obtained in [23].

The number of points needed to calculate the performance criteria in this estimate
may be so large that the speed of present-day computers may prove to be inadequate.
This difficulty may be overcome by developing “fast” algorithms dealing not with an
entire class of functions but instead taking into account the features of the functions
of each concrete problem.

To approximate a feasible region Φ(D), such an algorithm may be constructed in
the following way. (Although all subsequent considerations presume that the Lips-
chitz condition is satisfied, they are valid as well for the special Lipschitz condition
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if constant Lν is replaced by
∑r

j=1 L
j
ν ). Let the Lipschitz constants Lν, ν = 1, . . . , k,

be specified, and let N1 be the subset of the points from the set D that are ei-
ther the Pareto optimal points or lie within the ε-neighborhood of a Pareto optimal
point with respect to at least one criterion. In other words, we have the following:
Φν(α

0) ≤ Φν(α) ≤ Φν(α
0) + εν , where α0 ∈ P , and P is the Pareto optimal set.

Also, let N2 = D\N1 and εν > εν where εν is a certain number defined in proving
Theorem 2.2.

Definition 2.1 A feasible solution set Φ(D) is said to be normally approximated iff
any point of set N1 is approximated to within an accuracy of ε, and any point of set
N2 to within an accuracy of ε.

Theorem 2.2 There exists a normal approximation Φ(Dε) of a feasible solution set
Φ(D) [24].

2.9 The Pareto Optimal Set Approximation [2, 6]

Since the Pareto optimal set is unstable, even slight errors in calculating criteria
Φν(α) may lead to a drastic change in the set. This implies that by approximating
a feasible solution set with a given accuracy we cannot guarantee an appropriate ap-
proximation of the Pareto optimal set. Although the problem has been tackled since
the 1950s, a complete solution acceptable for the majority of practical problems is
still to be obtained. Nevertheless, promising methods have been proposed for some
classes of functions [25–27].

Let P be the Pareto optimal set in the design variable space; Φ(P ) be its image;
and ε be a set of admissible errors. It is desirable to construct a finite Pareto optimal
set Φ(Pε) approximating Φ(P ) to within an accuracy of ε.

Let Φ(Dε) be the ε-approximation of Φ(D), and Pε be the Pareto optimal subset
in Dε . As has already been mentioned, the complexity of constructing a finite ap-
proximation of the Pareto optimal set results from the fact that, in general, in approx-
imating the feasible solution set Φ(D) by a finite set Φ(Dε) to within an accuracy
of ε, one cannot achieve the approximation of Φ(P ) with the same accuracy. Such
problems are said to be ill-posed in the sense of Tikhonov [28]. Although this notion
is routinely used in computational mathematics, let us review it here.

Let P be a functional in the space X,P : X → Y . We suppose that there exists a
solution y∗ = infP(x), and Vε(y

∗) is the neighborhood of the desired solution y∗.
Now let us single out an element x∗ (or a set of elements) in space X and its δ-
neighborhood Vδ(x

∗) and call xε
δ a solution to the problem of finding the extremum

of P if the solution simultaneously satisfies the conditions xε
δ ∈ Vδ(x

∗) and P(xε
δ ) ∈

Vε(y
∗). If at least one of the conditions is not satisfied for arbitrary values of ε and δ,

then the problem is called ill-posed (in the sense of Tikhonov).
An analogous definition may be formulated for the case when P is an operator

mapping space X into space Y . Let us set X = {Φ(Dε),Φ(D)}; Y = {Φ(Pε),Φ(P )},
where ε → 0, and let P : X → Y be an operator relating any element of X to its Pareto
optimal subset. Then, in accordance with what was said before, the problem of con-
structing sets Φ(Dε) and Φ(Pε) belonging simultaneously to the ε-neighborhoods
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of Φ(D) and Φ(P ), respectively, is ill-posed. Of course, in the spaces X and Y , the
metric or topology [29] that corresponds to the system of preferences on Φ(D) must
be specified.

Let us define the Vε-neighborhood of a point Φ(α0) ∈ Φ(Π) as

Vε = {

Φ(α) ∈ Φ(Π) : ∣∣Φν

(

α0) − Φν(α)
∣
∣ ≤ εν, ν = 1, . . . , k

}

.

In Theorem 2.3 provided below, we construct a Pareto optimal set Φ(Pε) in which
for any point Φ(α0) ∈ Φ(P ) and any of its ε-neighborhoods Vε there may be found a
point Φ(β) ∈ Φ(Pε) belonging to Vε . Conversely, in the ε-neighborhood of any point
Φ(β) ∈ Φ(Pε), there must exist a point Φ(α0) ∈ Φ(P ). The set Φ(Pε) is called an
approximation possessing property M . Let Φ(Dε), an approximation of Φ(D), have
been constructed.

Theorem 2.3 If the conditions of Theorem 2.1 are satisfied, then there exists an ap-
proximation Φ(Pε) of Pareto set Φ(P ) possessing the M-property.

The theorem has been proved by analyzing the neighborhoods of the so-called
“suspicious” points from Φ(Dε), that is, the points with neighborhoods that contain
the true Pareto optimal vectors. If we find new Pareto optimal vectors in the neighbor-
hoods of the “suspicious” points, then these vectors may be added to Φ(Pε). Taken
together with Φ(Pε), they form the ε-approximation of a Pareto optimal set, [30].

It is shown in [6] that this approach solves the problem of the ill-posedness (in the
sense of Tikhonov) of the Pareto optimal set approximation.

3 Multicriteria Identification. Adequacy of Mathematical Models

Multicriteria identification is a new direction that is of great value in applications. In
the past we have solved a number of optimization problems. To a considerable extent,
our success in this was owed to the adequacy of the corresponding mathematical
models.

In the most common usage, the term “identification” means construction of the
mathematical model of a system and determination of the parameters αj (design
variables) of the model by using the information about the system response to known
external disturbances. Very often, when solving identification problems, the expert
has no information about the limits α∗

j and α∗∗
j for many of the variables.

As a rule, these applied identification problems have been treated as single-
criterion problems (see, e.g., [31, 32]). In the majority of conventional problems,
the system is tacitly assumed to be in full agreement with its mathematical model.
However, for complex engineering systems (e.g., machines) we generally cannot as-
sert a sufficient correspondence between the model and the object. This does not
allow one using a single criterion to evaluate the adequacy. In multicriteria identifica-
tion problems, there is no necessity of artificially introducing a single criterion to the
detriment of the physical essence of the problem. When constructing a mathematical
model, one first defines the class and structure of the model operator, that is, the law
according to which the disturbances (input variables) are transformed into the system
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response (output processes). This is called structural identification. For mechanical
systems, structural identification means determining the type and number of equa-
tions constituting the mathematical model of the system. Structural identification is
necessary if there is no preliminary information about the structure of the system or
this information is not sufficient for compiling equations.

Parametric identification is reduced to finding numerical values of the equation co-
efficients, based on the realization of the input and output processes. In doing so, fre-
quency responses, transfer functions, and unit step functions are often used. A number
of problems require preliminary experimental determination of the basic character-
istics of a mechanical system (e.g., the frequencies, shapes, and decrements of natu-
ral oscillations). When solving optimization problems, we have used the concept of
performance criterion. In identification problems, we deal with particular adequacy
(proximity) criteria. By adequacy (proximity) criteria we mean the discrepancies be-
tween the experimental and computed data, the latter being determined on the basis
of the mathematical model.

For example, when identifying the parameters of the dynamical model of an auto-
mobile, it is necessary to take into account such important indices (particular criteria)
as vibration accelerations at all characteristic points of the driver’s seat, driver’s cab,
frame, and engine; vertical dynamical reactions at contact areas between the wheels
and the road; relative (with respect to the frame) displacements of the cab, wheels,
engine, etc. [2, 3].

In all basic units of the structure under study, we experimentally measure the val-
ues of characteristic quantities of interest (e.g., displacements, velocities, accelera-
tions, etc.). At the same time, we calculate the corresponding quantities by using the
mathematical model. As a result, particular adequacy (proximity) criteria are formed
as functions of the difference between the experimental and computed data. Thus we
arrive at a multicriteria problem. The multicriteria consideration makes it possible to
extend the application area of the identification theory substantially.

3.1 Parameter Space Investigation Method in Problems of Multicriteria
Identification

We denote by Φc
ν(α), ν = 1, k the indices (criteria) resulting from the analysis of

the mathematical model that describes a physical system, where α = (α1, . . . , αr)

is the vector of the parameters of the model. Let Φ
exp
ν be the experimental value

of the νth criterion measured directly on the prototype. The experiment is assumed
to be sufficiently accurate and complete. By completeness we mean that the criteria
Φ

exp
ν are measured in all basic units at the most characteristic points of the structure.

The amount of measurement data must be sufficient for correct formulation of the
identification problem.

Suppose there exists a mathematical model describing the behavior of the sys-
tem. Let Φ = (‖Φc

1 − Φ
exp
1 ‖, . . . ,‖Φc

k − Φ
exp
k ‖), where ‖ · ‖ is a particular adequacy

(closeness, proximity) criterion. This criterion, as has already been mentioned, is a
function of the difference (error) Φc

ν − Φ
exp
ν . Very often it is given by (Φc

ν − Φ
exp
ν )2

or |Φc
ν −Φ

exp
ν |. If the experimental values Φ

exp
ν , ν = 1, k are measured with consider-

able error, then the quantity Φ
exp
ν can be treated as a random variable. If this random
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variable is normally distributed, the corresponding adequacy criterion is expressed
by M{‖Φc

ν − Φ
exp
ν ‖}, where M{‖ · ‖} denotes the mathematical expectation of the

random variable ‖ · ‖. For other distribution functions, more complicated methods of
estimation are used, for example, the maximum likelihood method.

We formulate the following problem by comparing the experimental and computa-
tional data, determining to what extent the model corresponds to the physical system,
and finding the variables of the model. In other words, it is necessary to find the
vectors αi satisfying conditions (1) and (2) and, in addition, the inequalities

∥
∥Φc

ν

(

αi
) − Φ

exp
ν

∥
∥ ≤ Φ∗∗

ν . (6)

Conditions (1), (2), and (6) define the feasible solution set Dα . Here, Φ∗∗
ν are criteria

constraints that are determined in the dialogue between the expert and a computer.
To a considerable extent, these constraints depend on the accuracy of the experiment
and the physical sense of the criteria Φν .

3.2 The Search for the Identified Solutions

The formulation and solution of the identification problem are based on the parameter
space investigation method. In accordance with the algorithm given above, we specify
the values Φ∗∗

ν and find vectors satisfying conditions (1), (2), and (6). The vectors αi
id

belonging to the feasible solution set Dα will be called adequate vectors.
The reconstruction of the parameters of a specific model on the basis of (1), (2),

and (6) is the main purpose and essence of multicriteria parametric identification.
Having performed this procedure for all structures (mathematical models), we thus
carry out multicriteria structural identification.

The vectors αi
id that belong to the set of adequate vectors and have been chosen by

using a special decision making rule will be called identified vectors.
The role of the decision making rule is often played by informal analysis of the set

of adequate vectors. If this analysis separates several equally acceptable vectors αi
id,

the solution of the identification problem is non-unique.
The identified vectors αi

id form the identification domain Did = ⋃

i α
i
id. Some-

times, by carrying out additional physical experiments, revising constraints Φ∗∗
ν , etc.,

one can reduce the domain Did and even achieve the result that this domain contains
only one vector. Unfortunately, this is far from usual. Non-unique reconstruction of
variables is a recompense for the discrepancy between the physical object and its
mathematical model, incompleteness of physical experiments, etc.

If a mathematical model is sufficiently good (i.e., it correctly describes the be-
havior of the physical system), then multicriteria parametric identification leads to
a nonempty set Dα . The most important factors that can lead to an empty Dα are
imperfection of the mathematical model and lack of information about the domain in
which the desired solutions should be searched for.

The search for the set Dα is very important, even in the case where the results
are not promising. It enables the expert to judge the mathematical model objectively
(not only intuitively), to analyze its advantages and drawbacks on the basis of all
proximity criteria, and to correct the problem formulation.
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Thus, multicriteria identification includes the determination and informal analysis
of the feasible solution set Dα with regard to all basic proximity criteria, as well as
finding identified solutions αi

id belonging to this set.
Multicriteria identification is often the only way to evaluate the quality of the

mathematical model and, hence, to optimize this model. The algorithm is successfully
used in practice. Below we discuss some important problems that are solved by using
this algorithm.

3.3 Operational Development of Prototypes

We will discuss the problems of perfecting engineering systems (machines). These
problems are mainly related to the operational development of a prototype of a ma-
chine designed for serial and mass production. First, the machine is tested. The struc-
ture of the test is determined by the type of the machine (an airplane, car, ship, ma-
chine tool, etc.). For example, cars are subjected to laboratory (bench) tests including
strength, fatigue, and vibration investigations of both individual units and the car as
a whole.

Significant attention is paid to road tests. These are carried out on proving grounds
where the car is tested on properly profiled road sections in different conditions de-
pending on the load carried and the speed of the car. Apart from this, cars are tested
on ordinary roads under conditions close to operational ones. Thus, cars are sub-
jected to bench and road tests. These tests are aimed at detecting imperfections with
subsequent operational development of the prototype so as to satisfy the customer’s
demands. Operational development is aimed at increasing durability and reliability,
reducing vibrations and noise, etc.

It is of great importance to make the process of operational development as short
as possible. This is the main problem faced by experts of cars and other machines.
We suggest carrying out the prototype’s operational development in two stages. In
the first stage, accelerated tests (for instance, bench tests) are performed. These tests
allow identifying the mathematical model of the object and determining its parame-
ters.

In the second stage, after multicriteria identification, the expert formulates and
solves a multicriteria optimization problem. In doing this, he uses the mathematical
model, whose adequacy was established in the first stage. Based on the results of the
optimization, the improvement of the prototype is carried out, and then the tests are
reproduced. This cycle is repeated until the expert decides to terminate the operational
development.

Thus, in the first stage, the set Dα is found as a result of multicriteria identi-
fication. In the second stage, the optimization problem is solved: we construct the
parallelepiped Π in Dα , determine the vector of performance criteria, and find the
feasible solution set D.

We have already mentioned problematic application of optimization in design
problems with significant discrepancy between the mathematical model and the phys-
ical system, as well as with improperly specified constraints. The results of optimiza-
tion in such cases are often of no practical value. According to our approach, we
obtain a validated model and the set Dα resulting from the multicriteria identifica-
tion. This, to a sufficient extent, justifies the optimization performed in the second
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stage and substantiates the recommendations for improving the prototype of a ma-
chine. In addition, this approach is expected to significantly reduce the amount of
expensive and time-consuming tests in the course of the operational development of
objects [33–36].

4 Multicriteria Optimization of Large-Scale Systems

When designing objects, one has to deal with complex mathematical models. It is
typical that these models have many hundreds of degrees of freedom, are described
by high-order sets of equations, and, as has already been mentioned, the calculation
of one solution can take significant computer time. This implies that it is not always
possible to solve problems such as (1)–(3) directly [1, 2, 37]. In some cases, stating
and solving these optimization problems requires high-performance computers with
large memory. The software package MOVI allows us to tackle computationally ex-
pensive problems in parallel or distributed mode, so that the desired number of trials
N is distributed among k computers. Thus, each computer finds a feasible solution
set for its own subproblem. Next, all feasible solution sets are combined and a single
Pareto optimal solution set is constructed. If this approach does not solve the prob-
lem, other techniques should be proposed. One remedy may be to split (decompose)
a large-scale system into subsystems that can be easily optimized, and then aggre-
gate the optimization results for each subsystem to obtain near-optimal solutions for
the whole system. This will allow the expert to determine the requirements for the
subsystems so as to make a machine optimal as a whole and, in this way, justify the
proposals for designing different units of the object.

4.1 Decomposition and Aggregation of Large-Scale Systems

To solve this problem we can use an approach associated with considering the whole
system as a hierarchical structure [2, 3]. The lower level of this structure comprises
subsystems, whereas the higher level is the system as a whole. In many cases, the op-
timization can be done more simply at the lower level. Therefore, by using the results
of the optimization at the lower level and thus reducing the number of competing
solutions for the whole system, we can optimize the system in reasonable time. This
approach was proposed relatively recently, and only the first steps have been made in
this direction. In particular, this is true for the methods proposed here. Nevertheless,
the results obtained can be used to optimize many large-scale systems.

Since the proposed approach is based on the optimization of the whole system
through the optimization of its subsystems, we briefly describe the relation between
the criteria for the system and subsystems. There are three possibilities for this rela-
tion:

(A) Some of the criteria of a subsystem can implicitly affect the performance criteria
of the system as a whole, and very often, such subsystem criteria are absent from
the list of performance criteria of the whole system. This situation is typical for
the majority of complex engineering systems.

(B) Some of the system criteria cannot be calculated at the subsystem level.
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(C) There are criteria that can be calculated for both the whole system and its sub-
systems.

There are the following common features of these problems.

(1) Some of the mathematical models cannot be effectively optimized with respect
to the whole criteria vector Φ , because it takes significant amount of computer
time to formulate and solve the problem (1)–(3). However, the calculation of
the values of particular performance criteria Φν takes a reasonable amount of
computation time.

(2) The system is “partitioned” into subsystems. The couplings connecting the sub-
systems will be called external. To separate out some of the subsystems as au-
tonomous, it is necessary to analyze the interaction of this subsystem with all
other subsystems, as well as the external disturbances applied to the subsystem
by the environment.

(3) The subsystems can be optimized. The idea of optimizing the whole system con-
sists of the following. First, when optimizing each (ith) subsystem, we obtain

for this subsystem a pseudo-feasible solution set D
i
, which, as a rule, is some-

what larger than the true feasible solution set. Next, we compile the vectors for

the whole system using the respective vectors from the sets D
i
. Then we check

whether the criteria and functional constraints of the system are satisfied in this
domain and, as a result, obtain the feasible solution set D for the whole system.
Finally, we search for the optimal solution over the set D. In other words, opti-
mizing the whole system is reduced, to a considerable extent, to the optimization
of its subsystems.

Algorithms that implement this idea, take into account (i) different dependences
between the design variables of the system and its subsystems, (ii) the basic possibil-
ities of simplifying the initial mathematical model, and (iii) the ways of determining
external disturbances for subsystems, etc.

5 Applications

The PSI method has been created and successfully integrated into various fields of
industry, science, and technology. This method has been used in designing the space
shuttle, nuclear reactors, unmanned vehicles, airplanes, cars, pumping units, ships,
metal tools, bridges, wind power system, wireless battlefield networks, energy effi-
cient sensor networks, and robots. The relevant bibliography is partly presented in
[1–5]. Several brief examples are provided below.

Example 5.1 (Multicriteria Identification of Characteristics of a Spindle Unit and Its
Operational Development [1, 2, 38]) The precision, reliability, and chatter stability of
metal-cutting machines depend strongly on the characteristics of their spindle units.
This calls on conducting the dynamic and thermal analyses of the spindle units in
the design and experimental development stages, using the data obtained by testing
a prototype. To solve the problem of identification, mathematical models of the dy-
namic and thermal systems of the spindle unit were developed on the basis of the
finite element method.
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Identification of Parameters of the Models Since inertial and stiffness parameters of
a spindle can be easily expressed through its geometric dimensions, the values of the
stiffness coefficients and the damping factors of the supports are the parameters to
be identified in the dynamical model. The parameters to be identified in the thermal
model are the values of the coefficients of convective heat removal from the spindle
open surface, the spindle surface between the front and rear supports, and the spindle
casing surface.

In the first problem, the set of criteria determining the static and dynamic behavior
of the spindle over the range of frequencies from 0 to 600 Hz (criteria Φ1 − Φ13)
was determined by analyzing the static elastic line of the spindle and its first shape of
vibration (345 Hz). In the second problem, it is reasonable to estimate the correspon-
dence between the thermal model and the actual thermal characteristics of the spindle
unit according to the temperature values at the structure points (criteria F1 − F23).

The adequacy criteria Φν, ν = 1,13 were defined. In the same way, we determine
Fν, ν = 1,23. Usually, a model is considered to be adequate to the object in the νth
criterion, if the relative discrepancy does not exceed 20 %, see [38].

Solution of the Identification Problems We performed 512 trials in each of the ini-
tial parallelepipeds Π1

1 and Π1
2 corresponding to the dynamic and heat models, re-

spectively. The calculations yielded acceptable discrepancies in static (5–10 %) and
dynamic (9–18 %) criteria. However, the discrepancies in thermal criteria turned out
to be unacceptably large (34–49 %). Thus, the correctness of the specification of the
limiting variation in the convective heat transfer coefficients of the thermal model
was doubtful.

Further modifications of the boundaries of the parallelepiped Π1
2 for the ther-

mal model were essentially based on analyzing histograms of feasible solutions and
graphs of criterion vs. design variable and criterion vs. criterion. As a result, we
determined the boundaries of a new parallelepiped Π2

2 . After we refined the heat
exchange coefficients, the discrepancies with respect to the thermal criteria did not
exceed 19 %.

For adequacy criteria Φ∗∗
ν and F ∗∗

ν not exceeding 20 %, we determined the feasi-
ble sets Dα for the dynamic and thermal models, which consisted of four and six vec-
tors, respectively. After an informal analysis, the vector α41

id for the dynamic model
and the vector α90

id for the thermal model were adopted as the best ones. These vectors
were chosen for the following reasons:

1. The vector α41
id corresponds to minimum discrepancies with respect to the static

displacement Φ2 (6 %) and the dynamic displacement Φ3 (11 %). These displace-
ments are known to influence the precision of machining most strongly.

2. The vector α90
id most accurately reflects the thermal state of the spindle unit near

the supports (the temperature discrepancies do not exceed 13 %), which is of great
practical importance for properly choosing the type of lubricant.

Thus, having constructed reliable mathematical models, we can proceed to the
next stage of experimental development of the spindle, and then to its optimization.

Solution of the Optimization Problem To determine the feasible sets for the de-
sign variables, we analyzed the adequate vectors and constructed parallelepipeds
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Π1 ⊆ Π1
1 and Π2 ⊆ Π2

2 for the dynamic and the thermal models, respectively. Six
performance criteria were selected to be minimized. These criteria characterize the
static and dynamic stiffness of the spindle unit and the thermal state of its supports.
256 trials were performed in Π1 and Π2. Optimization was accomplished by varying
the support stiffness coefficients and the heat exchange coefficients. The calculations
revealed a set consisting of three Pareto optimal vectors of the spindle unit. In our
case, the vector α114 was preferred, since it is close to the prototype as far as the
temperature criteria are concerned and exceeds it in the static and dynamic stiffness
by 8 % and 12.5 %, respectively. The results of the experimental development of the
spindle unit prototype with the optimal design variables were checked experimentally
and proved to be true to an acceptable accuracy of measurements.

Example 5.2 (Problem of a Naval Ship Design [1, 18, 19]) Among the particular
features of this problem are the high dimensionality of the design variable vector
(45 design variables) and the difficulties in improving a reasonably good prototype
under strong constraints on six performance criteria (the propulsion power factor; the
electrical power factor; the volume factor, the region factor, the weight factor, and
the cost), nine pseudo-criteria, and seven functional dependences. Since calculation
of one criterion vector took less than 1 second, hundreds of thousands of trails were
conducted in several experiments. Each subsequent experiment was carried out on
the basis of the previous one. In the process of solving, experts corrected the problem
six times. Interestingly, after the first two corrections of the initial formulation of
the problem, the feasible set was empty. However, the histograms and graphs showed
how to modify the constraints. This allowed us to improve the prototype significantly.

Example 5.3 (Problem of Design of a Car for Shock Protection [2, 39]) The criteria
in this problem are based on finite element model with thousands of elements and
nodes, and it takes approximately two hours to compute one vector of criteria. This
problem has 10 criteria: the mass of structure and residual strains in the car body
after impact in the nine most dangerous points of the rear panel. The number of
design variables in this problem is 13. However, since it requires such a large amount
of time to compute one vector of criteria, the optimization of design variables is
very difficult to implement. Therefore, the initial model was decomposed into two
models, the model of the bumper and model of the rear panel. In the first step, it
was necessary to define the set of feasible parameters for these subsystems. For this
purpose, 300 tests were carried out for each subsystem. Each test required no more
than 10 minutes. In the aggregation procedure (the second step), design variables of
each of the feasible design variable vectors of the bumper are united (concatenated)
with design variables of each of the corresponding design variable vectors of the
rear panel. For all solutions, we calculated criteria related to the whole system. The
feasible solution set appeared to be empty, i.e., the prototype cannot be improved.
Therefore the problem has been reformulated (i.e., the designs of the bumper and
the rear panel were modified by introducing additional stiffening ribs). As a result,
15 consistent design variable vectors were defined. For these vectors we calculated
all criteria using the initial model. The number of feasible solutions satisfying all
constraints of the structure was nine. The number of Pareto optimal solutions was five.
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The expert preferred the structure using design variable vector 257 of the bumper and
design variable vector 181 of the rear panel. A more uniform distribution of residual
displacements (compared with other designs) and an acceptable mass are features
of this structure. As a result, we have obtained a new design that satisfied all mass,
residual strain, and shock requirements.

Example 5.4 (Problem of Design of the Flight Control System [1, 40]) This example
presents preliminary results of the application of the PSI method and MOVI software
system to the problem of design of the L1 flight control system implemented in the
two turbine-powered dynamically scaled Generic Transport Model, which is a part
of the Airborne Subscale Transport Aircraft Research aircraft at the NASA Langley
Research Center. The problem statement was corrected twice. For the purpose of
economy of compute time in the first stage of the PSI method, the feasible solution
set was constructed taking into account the so-called “fast” criteria (in the sense of
the compute time required for one criteria vector). Then in the second stage, the
“slow” criteria were added. In the first iteration, constraints on 14 criteria and pseudo-
criteria were defined and 7 criteria were optimized; 1,024 trails were performed, and
it took approximately 1 minute to compute one vector of criteria and pseudo-criteria.
In the second iteration, we had 16 criteria and pseudo-criteria. Constraints on the
most criteria and pseudo-criteria were defined and 9 criteria were optimized; 512
trails were performed, and it took approximately 10 minutes to compute one vector
of criteria and pseudo-criteria. While 20 solutions were found to be feasible after the
first iteration, this number was reduced to 6 feasible solutions (all Pareto optimal)
after the second iteration. As a result, the optimal design has significantly improved
upon the basic characteristics of the adaptive flight control system.

6 Conclusions

One of the key features of engineering optimization problems is that their solutions
are based on construction and analysis of the set of feasible solutions. This is due
to the fact that experts cannot correctly specify the constraints, primarily the criteria
constraints. It is only the results of the investigation of the design variable space and
the criterion space that enable an expert to define the feasible solution set. In order
to construct the feasible solution set, a method called Parameter Space Investigation
(PSI) has been created and successfully integrated into various fields of industry,
science, and technology. In the PSI method, stating and solving the problem is a single
interactive process. In the course of investigation of the feasible solution set, the
experts are estimating the effect of the constraint correction. Usually the multicriteria
analysis shows expediency of correction of the initial statement of the problem.

Based on the PSI method, the methods for approximation of the feasible solution
set and Pareto set, identification of the parameters of mathematical models, decom-
position and aggregation of large systems were developed, and are summarized in
this paper.

In all cases that we have encountered in our experience, the results surpassing
prototypes in all criteria or in the most important ones were obtained. These results
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are due to application of the MOVI software system that allows one constructing test
tables and tables of feasible and Pareto solutions. These tables together with various
visualization tools (histograms and graphs) allow one correcting the statement of the
problem and improving values of the basic criteria.

Construction and approximation of the feasible solution set in identification and
optimization of large-scale systems are challenging problems, and their solution is
vital for the field of engineering optimization and other sciences. The present work
made a contribution to this exciting problem area by describing our results in de-
veloping methods for construction and approximation of the feasible solution set.
While the methods can be readily applied to solve many types of real-world prob-
lems, there are open problems that require further research. For example, these are:
problems of vector identification of mathematical models that are constructed from
observational data (these problems are common to biology and medicine); multicri-
teria problems of information transfer with very-high dimensional vectors of design
variables (these problems are relevant for cellular communication); and multicriteria
optimization with discrete space of design variables.
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