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ABSTRACT

One of the basic engineering optimization problems is improvement of the prototype. This problem is often
encountered by industrial and academic organizations that produce and design various objects (e.g. motor vehicles,
machine tools, ships, and aircrafts). This paper presents an approach for improving the prototype by constructing
the feasible and Pareto sets while performing multicriteria analysis. We introduce visualization methods that
facilitate construction of the feasible and Pareto sets. Using these techniques developed on the basis of Parameter
Space Investigation method, an expert can correctly state and solve the problem under consideration in a series of
dialogues with the computer. Finally, we present a case study of improving the ship prototype. Copyright r 2008
John Wiley & Sons, Ltd.

KEY WORDS: Parameter Space Investigation (PSI) method; multicriteria analysis; prototype improvement; feasible
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1. INTRODUCTION

The prototype improvement (or operational
development) problem can be defined as follows:
There exists a real object (e.g. car, airplane,
machine tool, or ship) that we call a ‘prototype’.
The prototype is described by k performance
criteria that take values Fp ¼ ðFp

1 ; . . . ;F
p
k). It is

necessary to improve all or the most significant
criteria of the prototype. The problem of opera-
tional development of a prototype is currently one
the most pressing and complex design problems.
This problem is often encountered in the produc-
tion of machine tools, cars, ships, and aircrafts,
where significant resources are allocated for the
operational development of the existing object.
Furthermore, making the operational development
of the prototype as quick as possible is
highly desirable. Prior studies provide examples of
real-life multicriteria problems of improving the
prototype of a car, valve gear, metal-cutting
machine tools, gear units, flexible manufacturing
systems (Statnikov and Matusov, 1995; Gobbi

et al., 2000), space shuttle, nuclear reactor, unmanned
vehicle configuration, airplane (Statnikov, 1999;
Stadler and Dauer, 1992), ship (Anil, 2005;
Statnikov and Matusov, 1995), truck frame, multi-
stage axial flow compressor for an aircraft engine,
robot, machine tools and their units, rear axle
housing for a truck (Statnikov and Matusov, 2002),
a parafoil-load delivery system (Yakimenko and
Statnikov, 2005), a controllable descending system
(Dobrokhodov et al., 2003), vibration machines
(Sobol’ and Statnikov, 2006), air bearing (Barrans
and Bhat, 2003), and so on.

To solve the above problem, the prototype’s
operational development requires two stages. In
the first stage, based on the tests one must identify
the mathematical model of the object and
determine its parameters. To this end, one can
solve an identification problem by working with
particular adequacy (proximity) criteria. By
adequacy criteria we mean the discrepancies
between the experimental and computed data,
the latter being determined on the basis of
mathematical model. The number of adequacy
criteria can reach many dozens if not hundreds.
Multicriteria identification and adequacy of the
mathematical models are discussed in detail in
Statnikov and Matusov (2002). In the second
stage, an expert formulates and solves the
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multicriteria optimization problem using the
performance criteria and the mathematical model
whose adequacy has been established in the first
stage.

Sometimes we face another situation: The
mathematical model of the prototype is given
and we know the values of criteria of the prototype
(Anil, 2005). In this case, we proceed with analysis
that resembles the second stage of the operational
development of the prototype.

The present work is devoted to approaches for
improving the basic performance criteria by chan-
ging the design variable, functional, and criteria
constraints while constructing the feasible and
Pareto optimal solution sets. These approaches
allow one to determine the potential of improving
the prototype.

In general, the prototype improvement problem
possesses several distinctive features outlined
below. The methodology proposed in the
present work is devoted to analysis of such
problems.

1. The problem is essentially multicriteria, and the
criteria are usually contradictory. For this
reason there are difficulties in defining the
criteria constraints correctly.

2. The initial constraints on the design variables,
criteria, and functional dependencies may result
in an empty or very sparse feasible solution set.
Therefore, it is necessary to correct the initial
statement of the problem. Thus, the formula-
tion and solution of the problem have to
comprise a single process (Sobol’ and Statni-
kov, 2006; Statnikov and Matusov, 2002).

3. The feasible solution set can be multiply
connected, and its volume may be several
orders of magnitude smaller than that of
the domain where the optimal solutions are
sought. Generally, both the feasible solu-
tion set and the Pareto optimal set are
nonconvex.

4. Mathematical models are usually complex sys-
tems of equations (including differential equa-
tions) that may be nonlinear, deterministic or
stochastic, with distributed or lumped para-
meters. Information about the smoothness of
goal functions is usually not available.

5. The analysis of Pareto optimal set to determine
the most preferable solution does not pose a
challenge to the expert (Ozernoy, 1988; Statni-
kov, 1999). This is because experts have a
sufficiently well-defined system of preferences

(Statnikov and Matusov, 2002) and the Pareto
optimal set often contains only a few solutions
due to stringent constraints.

Therefore, constructing the feasible solution set
is the most important step in formulating and
solving the prototype improvement problems.

In the present paper, solution of the prototype
improvement problem is based on construction of
the feasible solution set via the Parameter Space
Investigation (PSI) method that is widely used in
various fields of industry, science, and technology
(Sobol’ and Statnikov, 2006; Statnikov and
Matusov, 1995, 2002; Statnikov et al., 2006). We
introduce novel visualization procedures that
guide experts in analysis of such problems. In
some sense, the proposed visualization procedures
are ‘diagnostic tools’ for the experts.

During the last 30 years, significant research
has been done for visualization of two
dimensional projections of criterion, design, and
mixed vectors (e.g. see Cleveland, 1985; Lotov
et al., 2004; Meisel, 1973). It is also recognized in
the field that these projections by them-
selves cannot give a comprehensive idea about
localization of the feasible solution set in the
multidimensional design variable and criteria
spaces. The novelty of visualization techniques
proposed in this work is that they are used
together with the multicriteria test tables obtained
by the PSI method during construction of the
feasible solution set. These tools are an important
addition to the PSI method but they cannot
substitute for it. Thus, the main thesis of the
present paper is that in order to construct the
feasible solution set, it is necessary to consider
both multicriteria test tables and various
visualization tools.

This paper is organized as follows: Section 2
discusses the formulation and solution of the
prototype improvement problem by optimizing
performance criteria. In this section, we also
briefly review the PSI method that allows to
construct the feasible and Pareto sets. The visua-
lization tools are discussed in Section 3. The
geometric interpretation of the prototype
improvement problem is provided in Section 4.
Finally, to illustrate the usefulness of the
techniques presented in this paper, Sections 5
and 6 contain a case study that solves the
problem of improving the pretsaliminary ship
design prototype by using the PSI method and
various visualization tools.
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2. FORMULATION AND SOLUTION OF THE
PROTOTYPE IMPROVEMENT PROBLEM

2.1. Generalized formulation of multicriteria opti-
mization problems
We assume that a prototype depends on r design
variables a1; . . . ; ar representing a point a ¼ ða1;
. . . ; arÞ in the r-dimensional space. In the general
case, one has to take into account design variable,
functional, and criteria constraints.

The design variable constraints have the form
a�j pajpa��j , j ¼ 1; . . . ; r. Constraints a�j and a��j
define a parallelepiped P in the r-dimensional
design variable space. From the expert’s
perspective, the values of design variable
constraints can be modified, if that leads to
improvement of the basic criteria.

The functional constraints can be written as
follows: C�l pflðaÞpC��l , l ¼ 1; . . . ; t, where flðaÞ is
a functional relation, C�l and C��l are some
constants. Functional relations together with
constraints are some requirements of the object
that sometimes an expert can successively revise
in order to improve the basic performance
criteria. These can be norms, standards, and
other requirements such as mass, overall dimen-
sions, allowable stress in structural elements, and
so on.

The operation of a prototype is described by the
particular performance criteria FnðaÞ, n ¼ 1; . . . ; k.
All other things being equal, it is desired that these
criteria are optimized. For simplicity, we assume
that functions FnðaÞ are to be minimized. To avoid
situations in which the expert regards the values of
some criteria as unacceptable, we introduce
criteria constraints in the form FnðaÞpF��n ,
n ¼ 1; . . . ; k, where F��n is the worst value of
criterion FnðaÞ acceptable to an expert. These
constraints are repeatedly revised during solution
of the problem. The choice of F��n is discussed in
the following sub-section.

The design variable, functional, and criteria
constraints define the feasible solution set D� �.

Let us formulate one of the basic problems of
multicriteria optimization. It is necessary to define
the feasible solution set D and find a set P� D
such that

FðPÞ ¼ min
a2D

FðaÞ; ð1Þ

where FðaÞ ¼ ðF1ðaÞ; . . . ;FkðaÞÞ is the criterion
vector and P is the Pareto optimal set. We mean

that FðaÞoFðbÞ if for all n ¼ 1; . . . ; k, FnðaÞpFðbÞ
and for at least one n0 2 f1; . . . ; kg, Fn0ðaÞoFn0ðbÞ.

Finally, an expert determines a vector of design
variables aO 2 P that is the most preferred among
the vectors belonging to set P.

2.2. Parameter space investigation (PSI) method
Now we proceed by describing the PSI method
that allows to determine F��n and, hence, the
feasible solution set correctly. The PSI method is
based on the investigation of the parallelepiped P
with points of uniformly distributed sequences
(e.g. LPt sequences), see Stadler and Dauer (1992),
Statnikov and Matusov (1995, 2002) and Statni-
kov et al. (2006) for details. The method consists
of three stages:

Stage 1. Compilation of test tables via computer.
First, one chooses N test points a1; . . . ; aN that
satisfy the functional constraints. Then all the
particular criteria FnðaiÞ are calculated at each of
the points ai; for each of the criteria a test table is
compiled so that the values of Fnða1Þ; . . . ;FnðaNÞ
are arranged in increasing order, i.e.

Fnðai1 ÞpFnðai2 Þp � � �pFnðaiN Þ; n ¼ 1; . . . ; k ð2Þ

where i1; i2; . . . ; iN are the numbers of tests (a
separate set for each n). Taken together, the k
tables form a complete test table.

Stage 2. Preliminary selection of criterion
constraints. This stage includes interaction with
an expert. By analysing inequalities (2), an expert
specifies the criteria constraints F��n . Actually, an
expert has to consider one criterion at a time and
specify the respective constraints. One analyses a
test table and imposes the criterion constraint.
Then one proceeds to the next table, and so on.
Note that the revision of the criteria constraints
within the limits of the test tables does not lead to
any difficulties for an expert.

Since we want to minimize all criteria, F��n
should be the maximum values of the criteria
FnðaÞ, which guarantee an acceptable level of the
object’s operation. If the selected values of F��n are
not a maximum, then many interesting solutions
may be lost, since some of the criteria are
contradictory. Moreover in some cases the
feasible solution set may be empty.

In practice, an expert imposes the criteria
constraints in order to improve a prototype by
all criteria simultaneously. If it is impossible, one
improves a prototype by the most important
criteria. In process of dialogues with computer,
an expert repeatedly revises criteria constraints

PROTOTYPE IMPROVEMENT PROBLEM 47

Copyright r 2008 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 15: 45–61 (2008)

DOI: 10.1002/mcda



and carries out the multicriteria analysis. The PSI
method gives expert valuable information on the
advisability of revising various criteria constraints
with the aim of improving the basic criteria. The
expert sees what price he pays for making
concessions in various criteria, i.e. what one loses
and what one gains.

Stage 3. Solvability of problem (1) via computer.
Let us fix a criterion, say Fn1 ðaÞ, and consider the
corresponding test table (2). Let S1 be the number
of the values in the table satisfying the selected
criterion constraint:

Fn1 ða
i1Þp � � �pFn1ða

iS1 ÞpF��n1 ð3Þ

Then criterion Fn2 is selected by analogy with Fn1
and the values of Fn2 ða

i1Þ; . . . ;Fn2 ða
iS1 Þ in the test

table are considered. Let the table contain S2pS1

values such that Fn2ða
ij ÞpF��n2 , where 1pjpS2.

Similar procedures are carried out for each
criterion. Then if at least one point can be found
for which all criteria constraints are valid
simultaneously, then the set D is nonempty and
problem (1) is solvable. Otherwise, an expert
should return to Stage 2 and make certain
concessions in the specification of F��n . However,
if the concessions are highly undesirable, then one
may return to Stage 1 and increase the number of
points in order to repeat Stages 2 and 3 using
extended test tables (Statnikov and Matusov,
2002).

The procedure is to be iterated until D is
nonempty. Then the Pareto optimal set is
constructed in accordance with the definition
presented above. This is done by removing those
feasible points that can be improved with respect
to all criteria simultaneously.

Thus, in accordance with the PSI method, the
criteria constraints are determined in the dialogue
of an expert with a computer. Then an expert
should determine the Pareto set P and after
analysing P find the most preferred solution
FðaOÞ surpassing the prototype in all criteria, or
at least the most important ones. For the class of
problems considered in this paper, experts do not
encounter serious difficulties in analysing the
Pareto optimal set and in choosing the most
preferred solution. This is because experts have a
sufficiently well-defined system of preferences for
this type of problems (Statnikov and Matusov,
2002) and the Pareto optimal set often contains
only a few solutions due to stringent constraints.
More complex cases of the decision making, where
preferences on the Pareto optimal set are not

necessarily stable are discussed in Lichtenstein and
Slovic (2006), Wu and Azarm (2001) and Zitzler
et al. (2003).

2.3. Pseudo-criteria
As mentioned above, often an expert cannot
determine the functional constraints correctly.
For example, in practical problems ‘good’ solu-
tions may lie beyond the limits imposed by the
constraints.1 If informed of this, an expert may be
ready to modify the constraints so that the ‘good’
solutions will belong to the feasible solution set.
Below we present an approach to obtain such
information.

Instead of the function flðaÞpC��l , l ¼ 1; . . . ; t
with the soft constraint C��l , we introduce an
additional criterion2 FkþlðaÞ ¼ flðaÞ, which we call
a pseudo-criterion. To find the value of the
constraint F��kþl one has to compile a test table
containing FkþlðaÞ. By using the aforementioned
algorithm, one can define F��kþl in a way that
prevents the loss of interesting solutions.

In general, when solving a problem with soft
functional constraints, one has to find the set D,
taking all performance criteria and pseudo-criteria
into account. In other words, one must solve the
problem with the constraints

FnðaÞpF��n ; n ¼ 1; . . . ; k; kþ 1; . . . ; kþ t

Thus, to define the feasible solution set, we
consider a multicriteria problem with kþ t
criteria. Notice, however, that the pseudo-criteria
are not considered when constructing the Pareto
optimal set.

It is worthwhile to mention that many single-
criterion problems may have soft functional
constraints as well. In these cases the definition
of the feasible solution set is also very important.
For the definition of the feasible solution set, it is
necessary to represent functional dependencies
(with soft constraints) as pseudo-criteria. In
other words, we have to consider such single-
criterion problems as multicriteria ones.

1If these constraints are given unreasonably rigid,
solutions that do not satisfy them are not considered
at all. For this reason the feasible solution set can be
poor or even empty.
2Recall that we have test tables that contain performance
criteria FnðaÞ, n ¼ 1; . . . ; k.
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2.4. Construction of the combined feasible and
Pareto sets
Quite often the analysis of test tables points to
advisability of correcting the boundaries of the
initial parallelepiped (i.e. re-defining the con-
straints on the design variables) and constructing
a new parallelepiped. Suppose that appropriate
investigations have been performed in the new
parallelepiped, and that the corresponding feasible
set has been constructed. Now it is necessary to
combine the feasible sets constructed in both these
parallelepipeds and define the Pareto optimal
solutions in the combined feasible set. The
procedure of the repeated correction of parallele-
pipeds and construction of the combined feasible
and Pareto optimal sets is essential for our
problem, as emphasized in Section 4. Constructing
the combined Pareto optimal set allows to estimate
the contribution of each parallelepiped to this set
and the expediency of correcting the initial
problem (see Section 6).

There is another situation where construction of
the combined feasible and Pareto sets is needed.
These are the problems where calculation of the
criteria vector for one test requires a significant
amount of computer time (e.g. see Section 2.6).
Similarly, these are problems that require to
perform a very large number of tests. For the
efficient solution of such problems, the desired
number of tests N can be distributed among k
computers and each computer will perform a
search for the feasible solutions for its own
subproblem by conducting �N/k tests. Next, the
obtained feasible solution sets are combined and
the Pareto optimal solution set is constructed
(Statnikov et al., 2005a, 2006).

2.5. Number generators for systematic search in the
design variable space
To investigate design variable space, we use
uniformly distributed sequences. At present, the
so-called LPt sequences are among the best ones in
terms of uniformity characteristics (Sobol’ and
Statnikov, 2006; Statnikov and Matusov, 1995,
1996, 2002). These sequences are used to compute
N test points a1; . . . ; aN in the design variable space
during Stage 1 of the PSI method. Other uniformly
distributed sequences and nets (Faure, 1982;
Halton, 1960; Hammersley, 1960; Hlawka and
Taschner, 1991; Kuipers and Niederreiter, 1974;
Niederreiter, 1990; Statnikov and Matusov, 1996)
can be also successfully used in the PSI method.
However, prior to solving a specific problem, one

cannot say with certainty which uniformly dis-
tributed sequences are the most suitable. Much
depends on the behaviour of the criteria, the form
of the functional and design variable constraints,
the number of tests, and the geometry of the
feasible solution set (Statnikov and Matusov,
2002). Steuer and Sun (1995) have indicated an
opportunity of using random number generators
in the PSI method. Based on these recommenda-
tions, we have successfully applied random num-
ber generators in the PSI method to solve
multicriteria problems with very high-dimensional
design variable vectors (dimensionality5 1000)
and to also solve the problems in the parallel
mode (Statnikov et al., 2005a, 2006). The experi-
ments with various random number generators in
the PSI method are described in Statnikov et al.
(2005b).

2.6. Applications of the PSI method
The PSI method is implemented in the MOVI
(Multicriteria Optimization and Vector Identifica-
tion) software system (Yanushkevich et al., 2004).
The software package MOVI allows solution of
problems where the number of design variables
and criteria is not practically limited. Below we
summarize several problems with different char-
acteristics where the PSI method and MOVI
software system have been successfully applied.
These examples also demonstrate that the number
of tests depends on constraints, dimensionality of
design variable vector, and time of calculating one
criteria vector for given design variable values
(Statnikov et al., 2006).

(A) Problem of naval ship design (Anil, 2005).
Among the particular features of this problem are
the high dimensionality of the design variable
vector (45 design variables) and the difficulties in
improving a reasonably good prototype under
strong constraints on six performance criteria
(propulsion power factor, electrical power factor,
volume factor, region factor, weight factor, and
cost), nine pseudo-criteria, and seven functional
dependences. Since calculation of one vector of
criteria took o1 s and the design vector is of high
dimensionality, 200 000 tests were conducted in the
first experiment. Multicriteria analysis showed the
necessity of repeated correction of the constraints,
and because of this, five more experiments with
200 000–500 000 tests have been performed. Each
subsequent experiment was carried out on the
basis of the previous one. In the first two
experiments no feasible solutions were found; in
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the third experiment a few feasible solutions were
obtained; and it was only in the fourth experiment
where some satisfactory results were found. An
analysis of these results allowed to define a region
of ‘good’ solutions where subsequent experiments
were carried out. As a result, 26 Pareto optimal
solutions surpassing the prototype in all criteria
were identified.

(B) Problem of design of a car for shock
protection (Statnikov and Matusov, 2002). Unlike
the previous problem where calculation of a
criteria vector took o1 s, the criteria in this
problem are based on finite element model with
thousands of elements and nodes, and it takes
several hours to compute one vector of criteria.
This problem has 10 criteria: the mass of structure
and residual strains in the car body after impact in
the nine most dangerous points of the rear panel.
The number of design variables in this problem is
13, that at face value suggests a large
computational experiment. However, since it
requires such a large amount of computational
time to compute one vector of criteria, the
optimization of design variables is very difficult
to implement. Therefore, the initial model was
decomposed in two approximate models of
bumper and real panel. It was necessary to define
the consistent solutions between subsystems of
bumper and real panel. For this purpose, 300 tests
were carried out. Each test required no more than
10min. The analysis of the obtained solutions has
shown that the prototype cannot be improved. As
a result, the problem has been reformulated (i.e.
the designs of the bumper and the rear panel have
been modified by introducing additional stiffening
ribs). Fifteen consistent design variable vectors
were defined. For these vectors we have calculated
all criteria using the original model. The number
of feasible solutions satisfying all constraints of the
structure was nine. The number of Pareto optimal
solutions was five. This approach allowed to
improve the prototype in the successive
application of the PSI method.

(C) Problem of operation development of a truck
(Statnikov and Matusov, 2002). In terms of
computational time, this problem falls in-between
two problems described above. The computation
of a vector of criteria based on a system of
complex differential equations took �3min. In
the identification phase of this problem, we
identified 16 parameters of the mathematical
model using 65 adequacy criteria and defined to
what extent the model corresponds to the real

system. In the initial problem statement, 4096 tests
were conducted. Only seven solutions met the
criteria constraints and thus entered the feasible
solution set. After analysing obtained results, new
boundaries of design variables were defined. The
same number of tests (4096) was conducted. As a
result, 11 more feasible solutions were obtained.
On the basis of solution of the identification
problem and definition of the feasible solution set,
the problem of optimization by 20 performance
criteria was solved next. These criteria were
divided into the following groups: (1) comfort,
(2) durability, (3) load preservation, and (4) safety.
Twenty parameters were varied. Optimization was
aimed to improve the prototype. 4096 tests were
conducted and 21 solutions satisfied all constraints
and entered the feasible solution set. The Pareto
set consisted of 20 solutions.

3. TOOLS FOR VISUALIZATION

Below we describe a few visualization tools that
are particularly useful for multicriteria analysis.3 It
is important to emphasize that these tools should
be used together with the test tables (see Section
2.2) that allow to define feasible solutions in the
problems of any dimensionality. All the tools listed
below are implemented in the software system
MOVI.

� Histograms of the distribution of feasible and
Pareto optimal solutions. The intervals ½a�j ; a

��
j �,

j ¼ 1; . . . ; r are divided into 10 identical sub-
intervals. Above each subinterval, the number
of feasible designs entering this subinterval is
indicated. Analysing the histograms and graphs
reveals how the feasible and Pareto sets are
distributed in design variable space. The
histograms play the main role in correcting
design variable and other constraints.

� Graphs: ‘criterion vs. design variable.’ We con-
sider projections of the multidimensional points
FnðaiÞ; n ¼ 1; . . . ; k; i ¼ 1; . . . ;N1 onto the plane

3In this paper we indicate only some basic tools. A
detailed description of other tools, e.g. tables of
functional and criteria failures, tables of criteria, tables
of design variables, graphs of criteria vs. design
variables for the Pareto optimal solutions is provided
in Statnikov et al. (2005a, 2006) and Yanushkevich
et al. (2004).
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Fnaj. These projections provide information
about the sensitivity of criteria to the design
variables, ànd also point to localization of the
feasible solution set. Significance of the sensi-
tivity of criteria to the design variables is
indicated in (Sobol’, 2001).

� Graphs: ‘criterion vs. criterion.’ After N tests, N1
design variable vectors have entered the test
table. We consider projections of the multi-
dimensional points FnðaiÞ; n ¼ 1; . . . ; k, i ¼ 1;
. . . ;N1 onto the plane FiFj. These projections
provide information about dependencies be-
tween criteria and localization of the feasible
solution and Pareto optimal sets in criteria
space.

We note that the graphs ‘criterion vs. criterion’
by themselves are not sufficiently informative, and
it is indeed difficult or sometimes impossible to
make any conclusions solely based on them. That
is why we propose here a generalized approach of
solution of the prototype improvement problem.
Specifically, test tables and histograms together
with graphs give a comprehensive idea about the
feasible solution set and necessity of correcting
initial problem statement. This approach allows an
expert to (1) estimate the effect of all constraints,
(2) determine significant design variables, and (3)
compare the values of the criteria of a prototype
with the results obtained by the PSI method. The
examples of graphs and histograms are provided in
Section 6.

4. GEOMETRIC INTERPRETATION OF
IMPROVING A PROTOTYPE PROBLEM

Below we consider the basic scenarios for improv-
ing a prototype by using the PSI method and
provide guidelines to the experts.

Case 1a. The values of design variable vector ap

and criteria vector Fp ¼ ðFp
1 ;F

p
2) of the prototype

are known, see Figure 1. The boundaries of the
initial parallelepiped �1 are defined as admissible
deviations of the design variables from the
corresponding values of the prototype ap. In
Figure 1(b), vector ap is located in the centre of
the parallelepiped �1. Here and henceforth the
parallelepiped �1 corresponds to the initial
statement of the optimization problem. On the
basis of the PSI method, the feasible set DF and
the Pareto set PF are defined (Statnikov and
Matusov, 1995, 1996, 2002). The disconnected

feasible set is shaded in Figure 1. After analysing
the Pareto set PF, an expert determines the most
preferable solution FO 2 PF. Notice that Da, Pa,
ap, and aO are inverse images of DF, PF, Fp, and
FO, respectively, in the design variable space.

More general scenarios are discussed below.
Next we will consider the situations when an
expert should change the initial parallelepiped �1.

Case 1b. Similarly to case 1a, we assume that
the values of the vector ap and vector Fp are
known, see Figure 2. Let the feasible set, the
Pareto set PF1 (curve AB), and the most preferable
solution FO1 be defined in the initial statement of
the problem, see Figure 2(a).

In many optimization problems some coordinates
of the optimal solution aO1 ¼ ðaO1

1 ; . . . ; aO1
r ) are

located in the vicinity of the borders of the initial
parallelepiped �1. In these cases, it is logical to
change the initial borders and to perform new
investigations. A parallelepiped �2 with new
boundaries is shown in Figure 2(b). As a result of
investigating �2, the new feasible set, the Pareto set
PF2 (curve CD), and the most preferable solution
FO2 are defined, Figure 2(a). Since the feasible sets
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were defined in �1 and �2, an expert should
construct the combined feasible and Pareto optimal
sets. In this example the combined Pareto set
corresponds to PF2, Figure 2(a). In other words,
all the solutions belonging to PF2 are better than the
solutions belonging to PF1. Notice that A0B0, C0D0,
aO1, aO2, and ap are inverse images of AB, CD, FO1,
FO2, and Fp, respectively, in the design variable
space (Figure 2b).

On the basis of the PSI method, an expert can
determine the most significant design variables. If
an expert prefers to vary only the significant design
variables, the dimensionality of the new
parallelepiped �2 can be smaller than the
dimensionality of the initial parallelepiped �1.

Case 1c. In contrast to the case 1b, the new
combined Pareto set (curve AEC) consists of two
curves, AE 2 PF1 and EC 2 PF2, see Figure 3(a).
Here DF is a combined feasible set. Notice that
A0B0, C0D0, and A0E0C0 are inverse images of AB,
CD, and AEC in the design variable space
respectively (Figure 3b). After analysing the
combined Pareto set, an expert determines the
most preferable solution FO. Notice FO 2 DC.
From Figure 3(b) it follows that aO 2 �2. The
example illustrating this case is presented in
Sections 5 and 6.

Case 1d. The value of Fp is known, but many
values of the design variables of a prototype can be
unknown, see Figure 4. This case is common in the
first stage of the prototype’s operational
development. In this stage, an expert should
identify a mathematical model and its parameters
using adequacy criteria but usually has only a
rough idea about the limits of many identified
design variables. Assume that an expert cannot
identify the vector ap in �1 and the feasible set is
empty, see Figure 4(b).

The parallelepiped �1 must be corrected and an
expert constructs a new parallelepiped �2 where
he can identify the vector ap. Then an expert states
and solves the problem of improving a prototype
by the performance criteria (the second stage
mentioned in the Introduction). In an attempt to
improve the prototype, an expert constructs and
investigates parallelepipeds �3; . . . ;�F�1;�F. In
Figure 4(b) the feasible set Da and Pareto set Pa
are defined in the parallelepiped PF. The feasible
set Da is shaded. An expert determines the most
preferable solution FO in the Pareto optimal set
PF, Figure 4(a). Notice that Pa, ap, and aO are
inverse images of PF, Fp, and FO in the design
variable space respectively (Figure 4b).

In general, an expert corrects the statement of
the problem by constructing the parallelepipeds
�1; . . . ;�F�1;�F, and then constructs the
combined feasible and Pareto sets. These steps
are carried out by using the PSI method. For more
details (see Statnikov et al., 2005a).

In the above cases, the obtained Pareto optimal
solution FO surpassed the prototype Fp in all
criteria. Situations in which an expert cannot
improve all the criteria simultaneously are shown
in cases 2 and 3 below.

Case 2. A sufficiently typical situation is shown
in Figure 5. After constructing the Pareto optimal
set PF an expert revealed that Fp 2 PF. The
feasible set DF is shaded in Figure 5. The
multicriteria analysis of the obtained Pareto
optimal solutions allowed to determine the most
preferable solution FO.

Case 3. Here an expert wishes to improve the
prototype, and a priori he defines the value of the
criteria vector as FW ¼ ðFW

1 ; . . . ;F
W
k Þ, see Figure

6(a). However in contrast to the former cases, here
all or some values FW

1 ; . . . ;F
W
k can be

unattainable. Assume that the investigation of
the initial problem’s statement revealed that the
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feasible set is empty and an expert decides to
correct the initial parallelepiped �1. He corrects
the statement of the problem repeatedly, including
the construction of the parallelepipeds �2; . . . ;�F,
as shown in Figure 6(b). The Pareto sets PF1;PF2;
. . . ;PFF were defined after the construction and
investigation of the above parallelepipeds,
respectively, Figure 6(a). In our case, despite the
corrections of the design variable and other
constraints, the feasible solution set remains
empty.4 Thus, the Pareto set does not contain
any feasible solutions. Therefore, the desired
values of local criteria FW

n , n ¼ 1; . . . ; k are
unattainable.

We offer two suggestions in this situation: First,
an expert can make concessions and accept a
compromise solution FC, taking into account
the most important criteria, Figure 6(a).
(Pa1;Pa2; . . . ;PaF, aC are inverse images of
PF1;PF2; . . . ;PFF, FC, respectively, in the design

variable space, Figure 6(b); aW does not exist.) The
second option is not to accept a compromise
solution. In this case, it is possible that the expert’s
wishes can be realized by creating a new object,
which is different from the prototype. Therefore,
the multicriteria analysis is helpful to answer the
important question of how to improve the
prototype and by how much.

The identification of mathematical models of
different objects (vehicles, machine tools, and their
units) and their improvement were described in
detail in Statnikov and Matusov (2002). These
analyses correspond to cases 1d–3. Similar
problems concerning the parafoil-load delivery
system and the controllable descending system
were discussed in Dobrokhodov et al. (2003) and
Yakimenko and Statnikov (2005).

Finally, we would like to mention that
improvement of the prototype depends on (1)
constructive scheme (topology of the object), (2)
dimensionality of the design variable vector,
significant design variables, range of their
change, (3) materials constituting the design
variables (physical and chemical properties).

5. EXAMPLE: THE PROBLEM OF
IMPROVING A PRELIMINARY SHIP

DESIGN PROTOTYPE

The mathematical model described below is based
on the references (Bales, 1980; Fung, 1991). More
details are also provided in Anil (2005). Since the
example is used primarily to illustrate application
of the proposed methodology, we do not empha-
size specifics of the underlying physical problem.
The problem has eight criteria that are defined
implicitly. Two of the eight are performance
criteria: Resistance Performance defined using
Fung’s Resistance Prediction Algorithm (Bare
Hull Residuary Resistance Coefficient) and the
Seakeeping Performance defined by Bales Formula
(Bales Seakeeping Rank). The other six criteria are
pseudo-criteria. Since we have a readily available
mathematical model, we need only to conduct the
second stage of the operational development as
described in the ‘Introduction.’

The model is based on 14 design variables:

� a1: length of design waterline (assumed to be
equal to length between perpendiculars), m

� a2: beam of design waterline (assumed to be
equal to beam amidships), m
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Figure 5. Fp 2 PF. FO is the most preferable solution.
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Figure 6. Pareto optimal set PFF cannot ‘reach’ the
solution FW. FW is unattainable, aW does not exist.

Solution FC is a compromise.

4Earlier we considered cases in which feasible set D was
nonempty and the Pareto set P� D.
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� a3: draft (assumed to be equal to draft amid-
ships), m

� a4: distance from the station 0 (FP) to the cut-
up point, m

� a5: waterplane area forward of amidships, m2

� a6: waterplane area aft of amidships, m2

� a7: displaced volume forward of amidships, m3

� a8: displaced volume aft of amidships, m3

� a9: prismatic coefficient
� a10: projected transom area, m2

� a11: projected transom width, m
� a12: projected transom depth, m
� a13: half entrance angle, degrees
� a14: longitudinal centre of buoyancy from the

fore perpendicular, m

Thus, the design variable vector is
a ¼ ða1; . . . ; a14Þ. Values of the prototype design
variables ap and initial design variable constraints
(i.e. parallelepiped �1) are provided in Table I.

We want to maximize the performance criterion
F1 (Seakeeping Rank,) and to minimize the
performance criterion F2 (Residuary Resistance
Coefficient). The vector of performance criteria of
prototype is Fp ¼ ð8:608; 1:968Þ, see Table II.

There are 10 functional relations:

� f 1: displacement, metric ton
� f 2: block coefficient
� f 3: maximum section area coefficient (assumed

to be equal to midship section coefficient Cm)
� f 4: waterplane area coefficient

� f 5: waterplane area coefficient forward of
amidships

� f 6: waterplane area coefficient aft of amidships
� f 7: draft-to-length ratio
� f 8: cut-up ratio
� f 9: vertical prismatic coefficient forward of

amidships
� f 10: vertical prismatic coefficient aft of amid-

ships

The following rigid constraints are imposed on
the above four functional relations:

� f 1p2100
� f 2p0.51
� f 3X0.77
� f 4p0.84
� f 4X0.80

The others functional constraints f 5; . . . ; f 10 are
nonrigid, i.e. they can change in some limits,
however it is difficult to formulate these constraints
a priori. According to the PSI method the nonrigid
functional relations should be interpreted as the
pseudo-criteria i.e. F3 ¼ f 5, F4 ¼ f 6, F5 ¼ f 7,
F6 ¼ f 8, F7 ¼ f 9, and F8 ¼ f 10, see Section 2.3.
In this case, the constraints are defined during
solution of the problem (on the basis of the analysis
of the test table). Values F3;F4;F5;F6;F7;F8 for
the prototype are shown in Table II. Therefore, to
determine the feasible solution set we solve the

Table I. Table of design variables. Parallelepiped �1.

Design variables Prototype ap �1 Pareto optimal solutions in initial statement

Lower bound Upper bound a26087 a75527 a81087

a1 90.700 85.700 95.700 94.749 94.485 95.592

a2 12.670 10.670 14.670 11.659 11.860 11.656

a3 3.700 3.500 3.900 3.581 3.578 3.679

a4 51.650 48.650 54.650 52.081 50.611 52.584

a5 380.10 330.100 430.100 416.938 427.530 404.837

a6 552.900 502.900 602.900 506.413 505.068 514.845

a7 991.200 891.200 1091.200 930.403 952.688 940.701

a8 1040.100 940.000 1140.000 1041.730 1066.618 1096.428

a9 0.626 0.620 0.635 0.626 0.624 0.625

a10 11.740 9.740 13.740 11.758 10.099 10.416

a11 12.120 10.120 14.120 10.555 10.982 10.622

a12 0.950 0.750 1.050 0.880 1.025 0.754

a13 13.000 12.000 14.000 12.011 13.986 12.607

a14 45.900 43.900 47.900 47.810 47.604 44.024
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problem with criteria vector F ¼ ðF1;F2;F3;
F4;F5;F6;F7;F8Þ. The vector of functional
relations is (f1, f 2, f 3, f 4).

In summary, we want to investigate the
problem with a 14-dimensional design variable
space and an 8-dimensional criteria space, keeping
in mind complex constraints, which we need to
correct in order to construct feasible solutions.

The analysis process summarized in the next
section is based on application of the PSI method
with LPt sequences.

6. MULTICRITERIA ANALYSIS OF THE
SHIP DESIGN PROTOTYPE IMPROVEMENT

PROBLEM

6.1. Solution of the initial statement of the
optimization problem
We performed N5 131 072 tests in parallelepiped
�1 and only N15 1487 vectors entered the test
table. The 129 585 solutions did not satisfy the
functional constraints. Since we are solving
the problem of improving the prototype, the
performance criteria constraints equal to the
values of the prototype (Fp

1 ¼ F��1 ¼ 8:608 and
Fp

2 ¼ F��2 ¼ 1:968) were accepted. The constraints
on pseudo-criteria were defined on the basis of

analysing test tables. As a result, ND5 240 vectors
(including the prototype) entered the feasible set,
and NP5 3 vectors are the Pareto optimal solution
set (The remaining 1247 vectors did not satisfy the
criteria constraints). The coefficient of the effi-
ciency of searching the feasible solution set is gF ¼
240=131 072 ¼ 0:0018 (for Pareto optimal set it is
gP ¼ 0:00002). Very low values of coefficient gF
point out the difficulties in searching the feasible
solutions.

These vectors in the criteria space and design
variable space are denoted as F26087;F81087;F75527

and a26087; a81087; a75527 respectively. To simplify
the notation, we will denote vectors of criteria
corresponding to the ith test (i.e. Fi) simply as ] i.
Therefore, F26087;F81087;F75527 are written as
] 26087, ] 81087, and ] 75527 (see Table II). The
values of design variables and criteria of Pareto
optimal solutions are given in Tables I and II.

Below we briefly show some visualization tools
that led to improvement of the present results.

Graphs. ‘criterion vs. criterion.’ Figure 7 shows
dependency between the first criterion (Seakeeping
Rank) and the second criterion (Residuary
Resistance Coefficient).

Example of dependencies between the criterion
F1 and the pseudo-criterion F3 is shown in
Figure 8.

Table II. Table of criteria

Criteria Prototype Fp Pareto optimal solutions in initial statement Pareto optimal solutions in second statement

]26087 ]75527 ]81087 ] 74223 ]49109 ]106467

F1(max) 8.608 14.342 14.267 12.614 14.537 15.4598 15.4591

F2(min) 1.968 1.847 1.803 1.711 1.694 1.873 1.852

F3(pseudo) 0.662 0.755 0.763 0.727 0.753 0.767 0.767

F4(pseudo) 0.962 0.917 0.901 0.924 0.905 0.911 0.911

F5(pseudo) 0.041 0.038 0.038 0.038 0.038 0.039 0.038

F6(pseudo) 0.569 0.550 0.536 0.550 0.554 0.565 0.554

F7(pseudo) 0.705 0.623 0.623 0.632 0.605 0.596 0.603

F8(pseudo) 0.508 0.574 0.590 0.579 0.578 0.560 0.560

Criteria Pareto optimal solutions in final statement

]113487 ]4145 ]68410 ]39801 ]53988 ]72461 ]75110

F1(max) 15.308 15.183 15.131 15.052 14.887 14.805 14.601

F2(min) 1.677 1.674 1.657 1.645 1.644 1.629 1.622

F3(pseudo) 0.760 0.755 0.760 0.753 0.758 0.752 0.752

F4(pseudo) 0.918 0.923 0.916 0.926 0.921 0.926 0.928

F5(pseudo) 0.038 0.038 0.038 0.038 0.038 0.038 0.038

F6(pseudo) 0.538 0.547 0.558 0.534 0.551 0.538 0.554

F7(pseudo) 0.598 0.601 0.602 0.597 0.607 0.606 0.615

F8(pseudo) 0.561 0.553 0.561 0.557 0.559 0.563 0.568
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Graph. ‘criterion vs. design variable.’ Figure 9
shows the dependency of the criterion F2 vs. the
design variable a10.

Histograms of feasible solutions. The
distributions of feasible solutions for the range of
the 2nd and 10th design variables in the initial
parallelepiped �1 are shown in Figure 10(a). We
can see that there are large ‘gaps’ that do not
contain any feasible solutions. Similar
distributions with ‘gaps’ are observed for the 5th,
6th, and 9th design variables.

6.2. Second statement and solution of the optimiza-
tion problem. Parallelepiped �2

The analysis of the feasible solutions has pointed
ways for correction of the initial problem state-
ment. The reasoning for construction of the
parallelepiped �2 is given below:

� From the histogram of the second design
variable (Figure 10a), it follows that the value
of the upper boundary can be decreased to a��2
¼ 13:5 (recall that in the initial parallelepiped
�1 we had a��2 ¼ 14:67).

� From the graph ‘Criterion vs. Design Variable’
(Figure 9) and the histogram of the 10th design

variable (Figure 10a), it follows that the value of
the upper boundary can be decreased to a��10 ¼
13:0 (recall that in the initial parallelepiped �1

we had a��10 ¼ 13:74).
� The other boundaries of the parallelepiped �2

were determined similarly. In the process of the
definition of boundaries of parallelepiped �2,
the values of the prototype design variables and
Pareto optimal solutions ] 26087, ] 75527 and
] 81087 were also considered.

Again, N5 131 072 tests were conducted.
N15 18 270 vectors entered the test table. The
pseudo-criteria constraints were defined based on
the analysis of the test tables, while constraints on
performance criteria were kept unchanged. This
time ND5 17 302 vectors (including the
prototype) entered the feasible solution set, and
NP5 14 Pareto optimal solutions were identified
(] 87511, ] 21855, ] 63919, ] 49109, ] 106467,
] 90819, ] 78907, ] 116871, ] 31819, ] 64407,
] 74223, ] 80159, ] 105823, and ] 22671). It
follows that the coefficient of the efficiency of
searching the feasible solutions (gF) was increased
more than 70 times. Furthermore, the histograms
in�2 have much better distributions of the feasible
solutions than in �1 (see Figure 10).
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After combining the feasible sets in both problem
statements, we have constructed a combined Pareto
set. No solution belonging to the initial statement

has entered into the combined Pareto set. In other
words, all the results of optimization in the initial
statement have been improved. The preference of the
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expert was given to the vector ] 74223. This vector
surpassed all solutions in the initial statement by two
performance criteria simultaneously, see Table II
and Figure 12.

6.3. Final (third) statement and solution of the
optimization problem. Parallelepiped �3

By analysing the feasible solutions from �2, a new
parallelepiped �3 was constructed similarly as in
Section 6.2. After N5 131 072 tests, N15 34 986
vectors entered the test table. Compared to the
initial and second statements of the problem, all

criteria constraints now were determined on the
basis of analysis of the test tables. In particular,
more rigid criteria constraints (F��1 ¼ 14:342 and
F��2 ¼ 1:711) were formulated. The pseudo-criteria
constraints were also revised. As a results, we
obtained ND5 847 feasible solutions and NP5 7
Pareto optimal solutions.

The smaller number of the feasible solutions
compared to the previous problem statement can
be explained by much stronger performance
criteria constraints. The Pareto optimal solutions
(] 113487, ] 4145, ] 68410, ] 39801, ] 53988,
] 72461, ] 75110) are shown in Figure 11. The
values of criteria of these solutions are given in
Table II.

The analysis of Pareto optimal solutions
revealed that solution ] 75110 surpassed seven
solutions from the second statement (] 80159,
] 87511, ] 78907, ] 31819, ] 64407, ] 63919,
] 74223) by two criteria simultaneously. Solution
] 113487 surpasses five solutions from the second
statement (] 22671, ] 90819, ] 105823, ] 116871,
] 21855) by two criteria simultaneously. The
expert’s preference was given to solution ] 113487.

Using the feasible solutions from the second
and final statement, the combined Pareto set was
constructed. The combined Pareto set includes all
seven Pareto optimal solutions from the final
statement and only two solutions ] 106467,
] 49109 belonging to the second statement, see
Figure 12. Further attempts to improve the
obtained solutions have not yielded any new
interesting results.

The stability of the most interesting Pareto
optimal solutions was investigated with respect to
small variations of the parameters in the vicinity of
these solutions. To this end, we constructed
parallelepipeds centred in the Pareto optimal
solutions and performed 1024 tests in each
parallelepiped. The corresponding variations in
the criteria were small and insignificant, which
indicated the stability of the solutions.

The overall dynamics of improving a prototype
on the basis of two corrections of the problem
statement is shown in Figure 12.

In summary, the problem of improving a
preliminary ship design prototype has been
solved. This process included changing the range
of variation of design variables and revising all
criteria constraints. As a result of multicriteria
analysis, the parallelepiped �2 was constructed.
The volume of parallelepiped �2 was considerably
decreased in comparison with the volume of

(a)

(b)

Figure 10. Histograms of the distribution of feasible
and Pareto optimal solutions for the 2nd and 10th
design variables: (a) corresponds to initial parallelepiped
P1 and (b) corresponds to parallelepiped P2. The
percentage of designs entering the corresponding inter-
val is indicated on the right of each histogram. The
prototype is marked with a green diamond. The Pareto
optimal vectors are marked with red triangles. The
‘gaps’ of the initial range for the 2nd and 10th design

variables are circled.
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parallelepiped �1. Similarly, the parallelepiped �3

was constructed with a smaller volume than of
parallelepiped�2. This allowed a more careful and
efficient investigation of the design variable and
criteria spaces.

7. CONCLUSION

Construction of the feasible solution set is of
fundamental importance in multicriteria real-life
problems, especially when improving a prototype.
The primary contribution of the present work is
that on the basis of PSI method we provided
various visualization and analysis techniques that
facilitate construction of the feasible solution set
and help solve the problem of improving a
prototype. Furthermore, we described some basic
features of this problem, provided a geometrical
interpretation, and showed the necessity of con-
structing the combined Pareto set. Finally, we
presented a case study where we aimed at
improving a preliminary ship design prototype.
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systéme de numération (en dimension s). Acta
Arithmetica 41: 337–351.

Fung SC. 1991. Resistance and powering prediction for
transom stern hull forms during early stage ship
design. SNAME Transactions, Vol. 99, Department of
the Navy, NAVSEA, Washington, DC; 29–84.

Gobbi M, Mastinu G, Catelani D, Guglielmetto L,
Bocchi M. 2000. Multi-objective optional design of
road vehicle sub-systems by means of global approx-
imation. Proceedings of the 15th European ADAMS
Users’ Conference, Rome, Italy.

Halton JH. 1960. On the efficiency of certain quasi-
random sequences of points in evaluating multi-
dimensional integrals. Numerische Mathematik 2:
84–90.

Hammersley JM. 1960. Monte Carlo methods for
solving multivariable problems. Annals of the New
York Academy of Sciences 86: 844–874.

Hlawka E, Taschner R. 1991. Geometric and Analytic
Number Theory. Springer: Berlin.

Kuipers L, Niederreiter H. 1974. Uniform Distribution of
Sequences. Wiley: New York, USA.

Lichtenstein S, Slovic P. 2006. The Construction of
Preference. Cambridge University Press: New York,
USA.
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