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Abstract--Applied optimization problems such as design, identification, design of controlled sys- 
tems, operational development of prototypes, analysis of large-scale systems, and forecasting from 
observational data are multicriteria problems in essence. Construction of the feasible solution set is 
of primary importance in the above problems. The definition of a feasible solution set is usually con- 
sidered to be the skill of a designer. Even though this skill is essential, it is by no means sufficient for 
the correct statement of the problem. There are many antagonistic performance criteria and all kinds 
of constraints in these problems; therefore, it is quite difficult to correctly determine the feasible set. 
As a result, ill-posed problems are solved, and optimal solutions are searched for far from where they 
should be. As a consequence, the optimization results have no practical meaning. In this work we 
propose methods and tools that will assist the designer in defining the feasible solution set correctly. 
(~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - P a r a m e t e r  space investigation (PSI) method, Multicriteria analysis, Multicriteria 
problems, Uniformly distributed sequences, Feasible solution set. 

1. I N T R O D U C T I O N  

For the constructing of the feasible solution set, a method called the parameter space investigation 
(PSI method) has been created and successfully integrated into various fields of industry, science, 
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and technology [1-12]. The PSI method most fully meets important features of engineering opti- 
mization problems. This method has been used in designing the space shuttle, nuclear reactors, 
unmanned vehicles, cars, ships, metal-tools, etc. The PSI method is based on the systematic 
search in multidimensional parameter space by using uniformly distributed sequences. Another 
key feature of the method is an interactive dialogue of a designer with the computer providing 
valuable information about improvement of the basic criteria. In other words, the designer can 
analyze potential gains and losses in making concessions for various criteria. The PSI method 
is implemented in the MOVI (multicriteria optimization and vector identification) software that 
can be executed on a standard PC [13]. 

The purpose of the present paper is to demonstrate techniques of correct construction of the 
feasible solution set, multicriteria analysis tools provided by using MOVI, and their applications 
for statement and solution of applied optimization problems. Many of the above problems until 
recently appeared to be intractable. 

The method for constructing and analyzing the feasible solution set presented in this paper 
is oriented towards the statement and solution of real-life optimization problems. However, for 
the purposes of demonstrating the potentialities of the PSI method, we will also consider some 
relatively simple mathematical models. Despite their simplicity, the search for optimal solutions 
by traditional methods presents great, sometimes insurmountable difficulties. We would like 
to draw attention to the importance and complexity of multicriteria analysis, especially as it 
concerns real-life problems. 

This paper is organized as follows: formulation and solution of multicriteria optimization prob- 
lems are discussed in Section 2. Some basic features of engineering optimization problems are 
described in that section as well. The need to use uniformly distributed sequences to investigate 
the design variable space is demonstrated in Section 3. The PSI method as a tool for formulating 
and solving engineering optimization problems is presented in Section 4. The principal tools 
of multicriteria analysis based on the MOVI software are presented in Section 5. Multicriteria 
design, one of the fundamental engineering optimization problems, is described in Section 6. 
Construction and analysis of the feasible sets for solving this problem are also discussed in this 
section. In many cases, it is necessary to carry out a large-scale numerical experiment in order to 
construct the feasible solution set. The MOVI program makes it possible to solve these problems 
in parallel mode (Section 7). This section also discusses carrying out large-scale numerical exper- 
iments in problems with approximate models. Finally, we consider solutions of other important 
applied problems using the PSI method and MOVI software (Section 8): multicriteria optimal 
design of controlled engineering systems, multicriteria identification, operational development of 
prototypes, and multicriteria analysis from observational data. 

2. F O R M U L A T I O N  A N D  S O L U T I O N  O F  

M U L T I C R I T E R I A  O P T I M I Z A T I O N  P R O B L E M S  

Let us consider an object whose operation is described by a system of equations (differential, 
algebraic, etc.) or whose performance criteria can be directly calculated. We assume that  the 
system depends on r design variables c~1,... , a t  representing a point a = (c~1,..., c~r) in the 
r-dimensional space. In the general case one has to take into account design variable, functional, 
and criteria constraints. The design variable constraints have the form 

c~; < a j  < a~*, j = 1 , . . . , r .  (1) 

The functional constraints can be written as follows: 

C; <_ fz(a) <- C;*, l = 1,.. .  ,t, (2) 

where the functional relationships fl(~) may be either implicit or explicit functions of a,  and C;  
and C[* are the lower and the upper admissible hvalues of the quantity fl (a), respectively. The 
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operation of the object is described by the particular performance criteria ~ . (a) ,  v = 1 , . . . ,  k. 
All other things being equal, it is desired that these criteria ffgv(s) be optimized. For simplicity, 
we assume that functions ~v(s) are to be minimized. 

The constraints (1) single out a parallelepiped H in the r-dimensional design variable space. 
In turn, constraints (1) and (2) together define a certain subset G in H. To avoid situations 
in which the designer regards the values of some criteria as unacceptable, we introduce criteria 

constraints in the form 

• . ( s )  < ~**, v = 1 , . . . , k ,  (3) 

where ~,* is the worst value of criterion (I%(s) acceptable to the designer. (The choice of ~** is 
discussed in Section 4.) 

Criteria constraints differ from the functional constraints in that the former are adjusted while 
solving a problem and as a rule are repeatedly revised. Hence, unlike Cl* and Cl** , reasonable 
values of ~** cannot be chosen before solving the problem. 

Constraints (1)-(3) define a feasible solution set D, i.e., a set of design solutions that satisfy 
the constraints, and hence, D c G c II. In a prior work [1], we have demonstrated that if 
functions fz(s) and (b~(s) are continuous in II, then the sets G and D are closed. 

Let us formulate one of the basic problems of multicriteria optimization. It is necessary to find 
a set P C D such that 

• (P) = min ~(s) ,  (4) 
nED 

where (b(s) = ((bl(S), . . . ,  ~k(s)) is the criterion vector and P is the Pareto optimal set. 
We mean that ~(~) < ~(fl) if for all v = 1 , . . . , k ,  ~ , ( s )  G ~ ( f l )  and for at least one 

vo e {1, . . . ,k} ,  ~ o ( s )  < ~o(j3). 

DEFINITION. A point  s ° E D is called the Pareto optimal point if there exists  no point  ~ C D such 
that mv(~) < mv(s °) for all v = 1 , . . . , k  and m~0(s) < m~o(S °) for at l e~ t  one v0 e {1, . . . ,k}.  
A set P C D is cMled a Pareto optimal set i f  i t  consists o f  Pareto optimal points. 

In solving the above problem, one still has to determine the vector of design variables s ° 6 P, 
which is the most preferred among the vectors belonging to set P. 

2.1. Some Basic Features of Engineering Optimization Problems 

Many engineering optimization problems share the following features: 

• The problems are essentially multicriteria ones. As a rule, attempts are made to reduce 
mukicriteria problems to single-criterion problems. These numerous attempts to construct 
a generalized criterion in the form of a combination of particular criteria have proved to 
be fruitless. 

• The determination of the feasible solution set is one of the fundamental issues of the 
analysis of engineering problems. The construction of this set is an important step in the 
formulation and solution of such problems. 

• Problem formulation and solution comprise a single process. The customary approach 
is that the designer first states the problem and then a computer is employed to solve 
it. This approach is untenable, since one can rarely formulate a problem completely and 
correctly before solving it. Thus, problems should be formulated and solved interactively. 

• As a rule, mathematical models are complex systems of equations (including differential 
and other types of equations) that may be lineal" or nonlinear, deterministic or stochastic, 
with distributed or lumped parameters. Sometimes mathematical models have to be 
derived from observational data using machine learning techniques. 

• The feasible solution set can be multiply connected, and its volume may be several orders 
of magnitude smaller than that of the domain within which the optimal solution is sought. 

• Both the feasible solution set and the Pareto optimal set are nonconvex. In the general 
case, as a rule, information about the smoothness of criteria is not present. These criteria 
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functions are usually nonlinear and continuous; however, they may be nondifferentiable 
as weli. 

• A typical problem may contain a large number of constraints, and the dimensionality of 
the design variable and the criterion vectors may reach many dozens. 

• The analysis of the feasible set is of importance for designers. It allows one to not only 
correct the initial boundaries of the design variable ranges, but also to revise the original 
mathematical models and criteria. 

• A large-scale numerical experiment is often required in order to solve many real-life prob- 
lems. 

• Designers do not very often encounter serious difficulties in analyzing the feasible solution 
set and Pareto optimal set and in choosing the most preferred solution. They have a 
sufficiently well-defined system of preferences. Moreover, the aforementioned sets usually 
contain a small number of elements. 

3. U N I F O R M L Y  D I S T R I B U T E D  S E Q U E N C E S  

I N  M U L T I D I M E N S I O N A L  D O M A I N S  

The features of the problems under consideration make it necessary to represent vectors a by 
points of uniformly distributed sequences in the design variable space [1-5]. We briefly summarize 
this approach below. 

For many applied problems, the following situation is typical. There exists a multidimensional 
domain in which a function or a system of functions is considered whose values are calculated at 
certain points. Suppose that we wish to obtain some information on the behavior of the function 
in the entire domain or in a subdomain. Then, in the absence of additional information about 
the function, it is natural to require the points where the function is calculated to be uniformly 
distributed in some sense within the domain. Suppose that we consider a sequence of points 
P1, P'2,..., Pi , . . .  belonging to a unit r-dimensional cube K r. We denote by G an arbitrary 
domain in K T and we denote by SN(G) the number of points P~ belonging to G (1 < i < N). 
The sequence Pi is called uniformly distributed in K ~, if 

SN(G) 
lim - Vc, (5) 

N--.~ N 

where V(G) is the volume of the r-dimensional domain G. If, instead of the unit cube, a paral- 
lelepiped YI is considered, then the right-hand side of (5) transforms into V(G)/V(II). 

The meaning of the definition is the following [1,3]: for large values of N, the number of points 
of a given sequence belonging to an arbitrary domain G is proportional to volume V(G), 

SN(G) ,-., NV(G). (6) 

In solving engineering problems, one must commonly deal not with K ~, but with a certain 
parallelepiped rI, and, hence, move from the coordinates of the points uniformly distributed 
in K ~ to those in I'I. 

Let us formulate the following statements [1]: if points Qi with Cartesian coordinates (qil,... 
qi,.) form a uniformly distributed sequence in K ~, then points a i with Cartesian coordinates 
~i,..., ~ ,  where 

i * ** a j=aj  +qij(aj - a ; ) ,  j =  l,2,...,r, (7) 

form a uniformly distributed sequence in parallelepiped rI consisting of points (c~1,. • •, a~) whose 
coordinates satisfy the inequalities a~ < aj <_ a~*. 

Let al  . . . ,c~i, . . .  be a sequence of points uniformly distributed in 1I, and G C II be an 
arbitrary domain with volume V(G) > 0. If among the points a i, one chooses all the points 
belonging to G, then one obtains the sequence of points uniformly distributed in G [1]. 
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3.1. Quant i ta t ive  Characterist ics  of  Un i formi ty  

Let us fix a net consisting of the points P1 , - . . ,  PN C K. To estimate the uniformity of 
distribution of these points quantitatively, we introduce the quanti ty D(P1 , . . . ,  PN) called the 
discrepancy, implying the discrepancy between the 'ideal' and actual uniformities. 

Let P be an arbitrary point belonging to K and Gp be an n-dimensional parallelepiped with 
the diagonal OP and faces parallel to  the coordinate planes (Figure 1). Denote by Vcp the 
volume of Gp and by SN(Gp) ,  the number of points Pi which enter Gp  and whose subscripts 
satisfy the inequalities 1 < i < N.  

Figure 

xn 'l- J • • • E 
0 

o ~% 
1. Determination of the discrepancy. 

The discrepancy of the points P1 . . . .  , PN is 

D(PI , . . .  ,PN) ---- sup ISN (Gp) - NVc, ,I ,  (8) 
PEK 

where the supremum is taken over all possible positions of the point P in the cube. It  is natural 
to consider tha t  the smaller D(P1, . . . ,  PN) is, the more uniformly the points P1 , . . . ,PN  are 
arranged. Among uniformly distributed sequences known at present, the so-called LP~ sequences 
and Pr  nets are among the best ones in terms of uniformity characteristics as N -~ oo, see [1-5]. 

4. T H E  P A R A M E T E R  S P A C E  I N V E S T I G A T I O N  
M E T H O D  IS A T O O L  F O R  F O R M U L A T I N G  A N D  

SOLVING ENGINEERING OPTIMIZATION P R O B L E M S  

In Section 2, we formulated the problem of multicriteria optimization and defined the feasible 
solution set D, which is constructed using the values of ~**, v = 1 , . . . ,  k and some other con- 
straints. Now we proceed by describing the parameter space investigation (PSI) method, which 
allows correct determination of (I)~* and, hence, of the feasible solutions as well. 

The PSI method consists of the following three stages. 

STAGE' 1. COMPILATION OF TEST TABLES WITH THE HELP OF A COMPUTER. First, using 
uniformly distributed sequences, 1 one chooses N trial points a l , . . . ,  ~N, satisfying relation (2). 
Suppose that  the designer can a priori indicate the constraints ~** to be imposed on the crite- 
ria (b. (c~), v = 1 , . . . ,  k'. ~2"* is the value of the v th criterion for which the values (by (a) > ~** are 
known to be unacceptable. The constraints ~v , if any, should be imposed successively. First, 
one should calculate ~l(a~). If the inequality (I)l(c~ ~) _< ~ *  is satisfied, then we proceed to 
the calculation of the criterion ~2(c~i), and so on. The vectors a i violating this inequality are 
discarded. Finally, only the vectors a i satisfying all constraints C*, C**, and (~** will remain. 
Then, for each of the k' criteria a test table 2 is compiled so that  the values of ~ ( a l ) , . . . ,  ~v (a  N) 
are arranged in increasing order, i.e., 

< < .  < = k' < k, (9) 

where il, i 2 , . . . ,  iN are the numbers of trials (a separate set for each v). 

1Very often LP~ sequences axe applied for these purposes. See also Section 5.2. 
2Sometimes it is called an ordered test table, for example, see Figure 2. In an unordered table, the columns axe 
formed of the values of (I)v(ai), i = 1,..., N, v = 1 .... , k: 
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The remaining criteria ~ ( ~ ) ,  v = k'  + 1 , . . . ,  k should be calculated only for the vectors 
satisfying all inequalities of (9). By analogy with the criteria ~v(c~), v = 1, . . .  ,k '  test tables 
are constructed for the criteria ~,(~),  v = k ' +  1, . . .  ,k. Taken together, the k tables form a 
complete test table. 

STACE 2. SELECTION OF CRITERIA CONSTRAINTS. This stage requires intervention of the 
designer. When successively analyzing inequalities (9), the designer specifies the criteria con- 
straints @**. Note that the method described is in practice convenient for a designer. Actually, 
the designer has to consider one criterion at a time and specify the respective constraint. The 
designer should not "balance" by reducing some criterion at the expense of the others: one an- 
alyzes one test table and imposes the criterion constraint. Then one proceeds to the next table, 
and so on. Note that the revision of the criteria constraints within the limit of the test tables 
that have been constructed does not lead to any difficulties for the designer. 

All (I,** should be the maximum values of the criteria ~,(~),  which guarantee an acceptable 
level of the object's operation. If the selected values of ~** are not a maximum, then many 
important solutions may be lost, since some of the criteria may be contradictory. Note that when 
solving practical problems, the designer often cannot determine the maximum values of criteria 
constraints. 

As a rule, the designer may set ~v* equal to a criterion value ¢I%(~) whose feasibility is beyond 
doubt. 

STAGE 3. VERIFICATION OF THE SOLVABILITY OF PROBLEM (4) WITH THE HELP OF A COM- 
PUTER. Let us fix a criterion, say (I%1 (~), and consider the corresponding table (see (9)), and 
let $1 be the number of values in the table satisfying the selected criterion constraint 

- -  _ - -  v I • 

(10) 

One should choose the value of criterion (I% 1 for which $1 is minimum among the analogous 
numbers calculated for each of the criteria 4%. 

Then the value of criterion ~ is selected by analogy with ~)vl, and the values of (I% 2 (~i l) , . . . ,  
(~2 (~is~) in the test table are considered. Let the table contain $2 _< S1 values such that 
~-a ((~ij) _< 4~*~, 1 < j _< $2. Similar procedures are carried out for each of the criteria. Then if 
at least one point can be found for which all inequalities (3) are valid simultaneously, the set D 
defined by inequalities (1)-(3) is nonempty and problem (4) is solvable; i.e., D # 9. Otherwise 
D = 9, and one should return to Stage 2 and ask the designer to make certain concessions in the 
specification of ¢I,**. However, if the concessions are highly undesirable, then one may return to 
Stage 1 ,and increase the number of points in order to repeat Stages 2 and 3 using the extended 
test table. 

The procedure is to be continued until D is nonempty and the designer finds the acceptable 
solutions. Otherwise, the designer can attempt to improve these solutions by returning to Stage 1 
and/or Stage 2. The Pareto optimal set P is then constructed in accordance with the definition 
presented in Section 2. This is done by removing those feasible points that can be improved with 
respect to all the criteria simultaneously. 

Let us describe the procedure for constructing the maximum feasible set. If the selected values 
of ~** = ~v(~) are not the maximum ones, then one is not sure whether the values of ~(c~) 
from the interval ~,(~)  _< ~ ( a )  < ~** are feasible or not. In this case one has to construct 
the feasible solution set D under the constraints ~** = ~ ( ~ )  and the corresponding Pareto 
optimal set P. Further, the set b is constructed under the constraints ~ * ,  v -- 1 , . . . ,k ,  as 
well as the corresponding Pareto optimal set/5. Let  us compare ~(P)  and (p(/5). If the vectors 
belonging to ~(/5) do not substantially improve the value of the vectors from ~(P),  then one 
may set ~ *  = ~ .  (&). Otherwise, if the improvement is significant, then the values of the criteria 
constraints may be set equal to ~**. In this case one has to make sure that the optimal solutions 
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thus obtained are feasible. If the designer is unable to do this, then the criteria constraints are 
set equal to their previous values, 

¢ , ; *  = ~ ( ~ ) .  

This scheme can be used for all possible values of ~.(~) and ~**. 

The PSI method has proved to be a very convenient and effective tool for the designer, primarily 
because this method can be directly used for the statement and solution of the problem in an 
interactive mode. 

The problems of approximating the feasible solution set and Pareto optimal set are considered 
in 

4.1. Example of Test Tables 

Test tables with four criteria after 32 trims (N -- 32) are presented in Figure 2. The test 
tables are obtained using MOVI software (see Section 5). RecaLl that for each criterion there is 
a corresponding test table (column). The table contains 24 vectors (N1 -- 24); the remaining 
eight were not included in the test table, since they did not satisfy the functional constraints. 
All solutions are arranged in the tables in the order of deteriorating values of the performance 
criteria. For example, for the first criterion, vector 8, with a criterion value of 33.6893, is the 
best. Next in the order of deteriorating value of the first criterion are vectors 16, 24~ 12, . . . .  
The worst is vector 7, with a value of this criterion equal to 44.2836. The minimum (33.6893) 
and maximum (44.2836) criterion values among the solutions entering the test table are shown 
above the table. The remaining three tables are constructed in a similar manner. For the second 
criterion, vectors 12 and 25 are the best and vector 22 is the worst; in the third criterion, vector 7 
~s the best and vector 8 is the worst. It can be seen from the table that the first and third criteria 
are contra~lictory: the best solutions in the first criterion axe the worst in the third criterion and 
vice versa. Criteria constraints ~ * ,  @~*, @~*, ~ *  are highlighted by dark lines; they correspond 
to vectors 7, 22, 8, and 10. Since the worst values of the criteria are taken as the constraints, the 
number of feasible solutions N D  = 24. 

Z4!3~3~3~OTt~383s21E~ 

..... ! o . z ~ ~  ......... 

28 3 . G 5 2 ~ 5 1 ~ + 0 1  ........... = .......... ,~ . . . . . . . .  , ............. , . . . . . . . . .  

.. ~ ~ . ~ ~  

~ . ~ _ . .  : 
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Z514.0~4 ~)32~r2027E .01 
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7 L3~04~4701~00 2 7 ! ~ L ~ ~ 0 ~  
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13 Z 9 4 ~ I ~ E * O ~  
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. . . . . .  ii~" ~ ~ ' ~  : ' 
23 i 1.031 e7'~,.,,~r.Jlm~'OE.,~03 

6 ; 1.047500000QOI~E~3 

....... ~ ~ . ~ ~  " i 

13~1 ~ J I ~ E ~ , - n 3  

Figure 2. Example of test tables. 
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4.2.  D i a l o g u e  o f  t h e  D e s i g n e r  w i t h  t h e  C o m p u t e r  

As it was already been mentioned, the dialogue of the designer with the computer is central to 
constructing the feasible set after caxrying out N trials. We present four dialogues as examples. 
Criteria constraints (b~*, +~*, +~*, +~* are shown as dark lines in Figure 3. 

~ + i ~ , ~ +  ~ _ ! ~ : ~ ~  

! + ~ + : : !  + ~  I +:+~+~::t ~ i+i :~a  +: 

:+~+++ : : i ~ : t  ' , ° ~ + ~  +i] ~?,Z-~+- + 
![ ++. t++~+ ~+ ++mmmm,~,,++m ~ ] ,:,mmow~.,+: 

.++++ ,;i+,+ +++7:+,:++ : ~+q,..+ " ,+ 

(a) Dialogue 1, N D  = O. (b) Dia logue  2, N D  = 1. 

, , + _ _ ,  +,,_++++u+i . . . . .  "++ . . . .  ~ <t..,+m . . . . . . .  • + .  + + 

t + : : : ~ + ~  o o  o+., m+,,+ + 

+# + m : + ~ m m m . + + ~  + ~_m~sr, m m ~ + m  

: ~1 + e ~ m ~ + m  : m + ~ ¢ + s t . m  

(c) Dialogue 3, N D  = 1. (d) Dia logue  4, N D  = 2. 

Figure 3. Examples of dialogues with the computer. 

DIALOGUE 1. See Figure 3a. Criterion constraint (b~* = 37.756 is imposed on the first criterion. 
As a result, out of the 24 vectors entering the test table, 10 solutions satisfy this constraint (first 
column). After imposing the criterion constraint ~ *  = 31.084, there are six feasible solutions 
(second column). After the criterion constraint ~5~* = 3.2745, there are four feasible solutions 
(third column). After the criterion constraint (~* = 1032.5, the feasible set is empty, N D  = 0 

(fourth column). As it can be seen from Figure 3a, the criteria constraints in the first dialogue 
correspond to vectors 22, 24, 21, and 5. Since the feasible set is empty, one should either increase 
the number of trials N and/or revise the criteria constraints. Examples of dialogues where the 
criteria constraints were revised are given below. 

DIALOGUE 2. See Figure 3b. The first three criteria constraints are the same as before, while a 
minor concession has been made in the fourth criterion: instead of ~ *  = 1032.5, we have taken 
• ~* --- 1035, which corresponds to vector 2. As a result, the feasible set contains one solution, 
vector 2, so N D  = 1.  

DIALOGUE 3. See Figure 3c. The first, second, and fourth criteria constraints are the same as in 

Dialogue I. A concession has been made in the third criterion from ~* = 3.2745 to ~* = 4.6054, 

which corresponds to vector 28. The feasible set remains unchanged, and ND -- I. 
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DIALOGUE 4. See Figure 3d. Compared to Dialogue 1, concessions have been made in the first 
and third criteria to the values ~ *  = 39.523 and ~5~* _- 4.6054. Two vectors have entered the 
feasible set, 14 and 28, and we have N D  = 2. 

5. I M P L E M E N T A T I O N  O F  T H E  P S I  M E T H O D  

I N  M O V I  ( M U L T I C R I T E R I A  O P T I M I Z A T I O N  

A N D  V E C T O R  I D E N T I F I C A T I O N )  

MOVI, a comprehensive software system for multicriteria analysis, does not impose any limita- 
tions on the number of design variables and criteria; this number is bounded only by the technical 
characteristics of the computer. For many engineering optimization problems, the difficulty in 
determining the feasible set requires one to carry out a large-scale numerical experiment. MOVI 
allows these problems to be solved in parallel mode as described in Section 7. The flexible soft- 
ware architecture of MOVI allows optimization of mathematical models developed in Mathworks 
Matlab/Simulink, C / C + + ,  and Borland Delphi. 

5.1. Analys i s  Tools  

The analysis tools provided in MOVI allow one to determine the functionality of the mathe- 
matical model and constraints, as well as provide hints for correcting the initial statement of the 
problem. Analysis tools include the following. 

Tables o f  feasible and Pareto  opt imal  solut ions  

After conducting the trails, MOVI provides the designer with information on the obtained 
results, that  is, the values of the feasible and Pareto optimal criteria and design variable vectors. 
Analysis of these tables allows one to choose the most preferable solution to formulate new 
bounds for the design variables and investigate the new parallelepiped with the aim of improving 
previously found optimal solutions. 

His tograms  of  feasible solut ions  

Visualization of the distribution of feasible solutions over the design variable intervals [a~, a~*], 
j = 1 , . . . ,  r is of great importance. In particular, the histograms show the role of the functional 
and criteria constraints in the design variable space and allow the designer to correct the initial 
design variable constraints accordingly. 

Graphs criterion vs. des ign variable I I  

After N trials, N1 design variable vectors have entered the test table. We consider projections 
of the points ~ (a~), v = 1 . . . .  , k, i = 1 , . . . ,  N1, onto the plane ~ a j ,  j = 1 , . . . ,  r. These graphs 
provide information on dependencies between criteria and design variables. 

Graphs criterion vs. criterion 

After N trials, N1 design variable vectors have entered the test table. We consider projections 
of the points ~ . (a i ) ,  v = 1 , . . . , i , . . . , j , . . . , k ,  i = 1 , . . . , N 1 ,  onto the plane ~iffgj. These 
projections provide the designer with information about dependencies between criteria. 

Graphs  criterion vs. des ign variable I 

After the analysis of the test table, preference was given to Pareto optimal vector a i. We 
fix all components of this vector except for one, a~, and find out how the changes of criteria 

i in the initial interval [c~; a~*]. This analysis is used for investigating ff91,..., ~k depend on a j  
Pareto optimal solutions. 
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P s e u d o c r i t e r i a  and  t ab l e s  of  t h e  func t iona l  fa i lures  

The functional constraints are very often not specified rigidly; i.e., they may be revised in 
the process of solving the problem. However, it is very difficult to determine them correctly. 
As a result, we often obtain a "sparse" or even empty feasible solution set. Two means of 
determining soft functional criteria are considered in the PSI method. The first is to represent 
functional dependences fl(c~) in test tables in the form of pseudocriteria. Analysis of the test 
tables allows one to determine the constraints on the pseudocriteria with consideration of all 
criteria constraints. The second is correction of the initial values C~, Ct** using so-called tables 
of functional failures. Only those solutions that do not satisfy the functional constraints enter 
these tables. The purpose of the analysis of the tables of functional failures is to determine how 
the functional constraints "work" and to correct them if necessary. 

The analysis of all tables, histograms, and graphs is an important process of correcting the 
initial statement of the problem, since when assigning a priori  constraints, especially when there 
are many of them, the designer seldom knows how they will behave. 

In Sections 6-8, we will show multicriteria analysis tools in action for solving the main classes 
of engineering optimization problems. 

5.2 Var ious  G e n e r a t o r s  for S y s t e m a t i c  Sea rch  in the  Des ign  Var i ab le  Space  

~-- L ~J, ~ . . . . . . . . . . . . . . . . . . . . . . . .  e,,t . . . .  to the v . . . .  ,,~L~ uf using random number gen- 
erators (rng) in the PSI method (along with LPr sequences). We also mention here works by 
Halton [15], Hammersley [16], Hlawka [17], Faure [18], and Kuipers and Niederreiter [19,20], 
in which good uniformly distributed sequences (in the sense of the uniformity estimates) have 
been constructed. Furthermore, Statnikov and Matusov have noted that  various pseudorandom 
sequences (nets) may be used in the PSI method [2-4,21]. 

Prior to solving a concrete problem, one cannot say with certainty which of the generators 
is most suitable. Much depends on the behavior of the criteria, the form of the functional and 
design variable constraints, the number of test trials, and the geometry of the feasible solution set. 
The foregoing primarily applies to problems where, for objective reasons, a small (insufficient) 
number of trials is conducted. Carrying out a small number of trials is characteristic of the 
investigation of real-life problems, for example, in problems with a high dimensionality of the 
design variable vector. We also consider problems that  require a great deal of computer time to 
~l~,,l~e~ ~ criteria vcctor, q~t. ;~ .^ .~ ,-^ v,eme,~ models car, ~ u  be as~u~-:  . . . .  J to 
these operations. For these problems, various test trial generators--random number generator 
(rng) and other pseudorandom sequences---can be used in the PSI method. 

The use of rng has turned out to be suitable for investigating multicriteria problems depending 
on many tens, hundreds, or thousands of design variables [21]. 

In addition to LP~ sequences and rng, the MOVI allows the use of other generators. The 
possibility of using various generators in the PSI method for probing the design variable space 
makes the method even more versatile. 

6. M U L T I C R I T E R I A  D E S I G N :  C O N S T R U C T I O N  

A N D  A N A L Y S I S  O F  T H E  F E A S I B L E  S E T S  

6.1. T w o - M a s s  D y n a m i c a l  S y s t e m  

In this example, we determine the feasible solution set of the two-mass dynamical system 
shown in Figure 4. The system consists of two bodies with masses M1 and M2. The mass M1 is 
attached to a fixed base by a spring with stiffness coefficient K1. A spring-and-dashpot element 
with stiffness coefficient K2 and damping coefficient C is located between masses M1 and/I//2. 
The harmonic force P -  cos(~t) acts upon mass M5 The amplitude and frequency of the exciting 
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~.------L~,, (7 

Pcos(mt) 

Figure 4. A two-mass dynamicai system. 

force are identified as P = 2000(N) and w = 30(s-1). The motion of this system is governed by 
the equations 

MxX~' + C (Z~ - X~) + K1X1 + K2 (X1 - X2) = P '  cos(wt), (11) 
M2X~' + C (X~ - X;)  + K2(X2 - X1) = 0. 

We treat the parameters K1, K2, M1, M2, and C as the design variables to be determined, i.e., 
a l  -- K1, a2 -- K2, a3 = M1, a4 -- M2, a5 -- C. The design variable constraints are prescribed 
as the parallelepiped II defined by the inequalities 

1.1"106<_a1_<2.0"106 ( N )  ", 

4.0"104_<(~2<_5.0"104 ( N )  ", 

950 < a3 < 1050 (kg); (12) 

30 < a4 _< 70 (kg); 

80 _<as _< 120 ( - ~ ) .  

There are three functional constraints (on the total mass and on the partial frequencies) 

fl(ce) -- oL3 -]- oL4 < 1100.0 (kg); 

33.0 ___ f ~ ( a )  = p~ = ___ 42.o (s - t )  ; (13) 

27.0 ~ h ( ~ )  = ;2  = ~/~_< 3 2 0  ( s - : ) .  

The upper limits imposed on the functions f2(a) and f3(a) are not rigid. For this reason, the 
functional relations f2(a) and f3(a) are interpreted as pseudocriteria ~1 and ~2- Thus, we have 
three functional constraints 

f l ( a )  = a3 + OL4 ~_~ 1100.0, 

33 _< f2(a),  (14) 

27 ~ f3(a).  

We want to optimize the system with respect to the following four performance criteria 

~3 = Xlo  (mm)--vibrat ion amplitude of the first mass; 

~4 = M1 + M2 (kg)--metal  consumption of the system; 

¢ 1 } 5 _  X l ~  ~d . . Xl~t and ~6 = ----dimensionless dynamical characteristics of the system, 
Pl 

where Xlst is the static displacement of mass M1 under the action of the force P. Thus, we have 
a vector of criteria ~ = (~1, ~2, (]}3, ff94, ~5, (b6), which will be used for construction of the test 
tables. All criteria and pseudocriteria need to be minimized. 
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6 . 2 .  E x p e r i m e n t s  

EXPERIMENT 1. Is  THE STATEMENT OF THE ~ROBLEM CORRECT?We p e r f o r m e d  1024 t r ia l s  3 

using LP~- sequences and constructed the test table. A total of 789 solutions was included in 
the test table, since they Satisfied the functional Constraintsl The remaining 235 solutions did 
not satisfy the functional constraints (14) and entered the tables of functional failures. While 
analyzing the test table, the following criteria constraints were formulated: 

@~* = 35.2008; 

@~* = 36.9807; 

4)~* = 8.4166; 

@~* -- 1019.1211; 

@~* = 18.795; 

(I)~* = 0.9087. 

Only eight solutions were found to be feasible (i.e., satisfied constraints (15)). Four of these 
feasible solutions are Pareto optimal (corresponding to trials ~520, ~336,  ~672, ~288). 

The analysis of the histograms shows the effect of design variable, functional and criteria 
constraints (see Figure 5). In particular, all feasible solutions for design variables a i  and as axe 
located in the left ends of the intervals. The feasible solutions for the design variable c~4 are 
located in the middle of the interval. On the other hand, the feasible solutions for a2 and c~s 
are more or less uniformly distributed along the interval. These histograms were produced in the 
MOVI software system using the option histograms of feasible solutions. The results of analyzing 
the histograms for design variables ~i ,  as,  and ~ are summarized in Table 1. The first column 
of Table 1 lists the initial intervals of variation of ~i,  ~s, and aa. The second column contains 

4 - ;  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . .  : . . . . . . . . . . . . . . .  : 

: ~ : :  , ~ . . ~ . - /  . - _ .: 

(a) First design variable. (b) Third design variable. 

~ i ! ! [ ]  N ! i 

~ l l n V m m e 4 ~ 3 j ~  . 9 ~ )  

(c) Fourth design variable. (d) Fifth design variable. 

Figure 5. Histograms of the distribution of feasible solutions. 

3In this paper, we use equivalent words for describing designs: solutions, or vectors, or tr/a/s. 
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Table 1. Refining initial design variables constraints.  

1 3  

Initial Intervals of Variation 
of Design Variables 

(Experiment 1 ) 
1.1 - 106  < c q  < 2 . 0 . 1 0 6  

950 _~ c~3 _~ 1050 

30 _< aa  < 70 

Subintervals Where  
the  Feasible Solutions Belong 

(Experiment 1 ) 

1.1 - 106 _< a l  _< 1.17.106 

950 < a s  < 975 

42 ~ aa  < 60.35 

New Intervals of Variation 
of Design Variables 

(Experiment P) 

9 .105  _< c~ < 1.2.106 

850 < a3 _< 980 

40 _< a4 ~ 64 

it-~;, ~ i~4 ................................................................................. 

Figure 6. Feasible solutions (criteria vectors). 

~,, ,- . . . .  } 

(a) Criterion 1 vs, design variable 1. (b) Cri terion 2 vs. design variable 1. 

" L . L : : Z :  ~ ' 5 . . . 5 ~  . . . . . .  ~ . . . .  : "~o ~ . . . . . . . . . . . . . . . . . . . .  

(c) Criterion 3 vs. design variable 1. (d) Cri terion 6 vs. design variable 1. 

Figure 7. The  dependencies of criteria on the  first design variable. The  regions of 
the  feasible and Pareto  optimal solutions are circled. 
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the corresponding subintervals where the feasible solutions belong. In order to improve the 
obtained feasible solutions, the designer decided to redo the investigation with the modified 
initial intervals of variation of design variables az, c~s, and a4 (as shown in the last column in 
Table 1) and to keep the initial intervals for ~2 and c~5 (i.e., as in (12)). This defines a new 
parallelepiped Hi, which was used for Ezperimenl 2. 

As we also have mentioned, in addition to histograms the designer obtains information in the 
form of tables containing value.~ of feasible and Pareto optimal vectors of criteria and design 
variables. Eight feasible solutions are given in Figure 6, four Pareto optimal solutions of which 
were shown above. Since pseudocriteria are not taken into consideration when constructing 
Pareto optimal solutions, only the criteria values are presented in Figure 6. Based on an analysis 
of the Pareto optimal solutions, the designer chooses the most preferable solution. 

It  is also important to analyze the influence of design variables on criteria. For example, 
Figure 7 shows the dependencies of criteria l l ,  ~ ,  ~3, and ¢b6 on design variable ~l.  We 
can conclude from Figure 7 that  criteria ~l  and ~ are antagonistic with respect to c~l. This 
means that  further improvement of criterion ~l  is possible by decreasing the value of c~, which 
results in a deterioration of the value of ~6. The criterion ¢3 is also dependent on c~l, while the 
dependency of <~2 on c~l is not obvious. These figures were produced in MOVI using the option 
graphs criterion vs. design variable H. 

In order to make decisions about the most preferable solution in Pareto set, it is necessary to 
analyze thedependencies between criteria that are shownJn Figure 8: We cait see the arr~agonism 
of the first and sixth criteria and the rather complex relationships between the remaining criteria. 
These figures were produced in MOVI using the option graphs criterion vs. criterion. 

f ~  ................. ~ ' * i - -  ; ~ . +  , , ' , 7 , - - + ~  . . . . . . .  7 ~ - :  - 

"'! ;7 
(a) Criterion 1 vs. criterion 6. (b) Criterion 3 vs, criterion 1. 

m v  ? ~ *  * " ~ *  ~.,, **iP" , s , ~  . .  ~ •  

• " "o  " ~ • ~ " *  ~ , , " o , t a e  , 

• : " : # * @  ~ ~ : ?<3 $ ~ . 

(c) Criterion 1 vs. criterion 2. (d) Criterion 2 vs. criterion 3. 

Figure 8. The dependencies between criteria. The regions of the feasible and Pareto 
optimal solutions are circled. 



Multicriteria Analysis Tools 15 

(a) Criterion 1 vs. design variable 1. (b) Criterion 3 vs. design variable 1. 

(c) Criterion 1 vs. design variable 3. (d) Criterion 6 vs. design variable 3. 

Figure 9. The dependency of a criterion on design variables for Pareto optimal 
solution ~288. The regions of the feasible and Pareto optimal solutions are circled. 

Suppose that after analyzing the Pareto optimal solutions, the designer gives preference to 
criterion vector ~288. Figure 9 shows the dependencies of criteria on design variables for vec- 
tor ~288 (when one design variable is changing while all the remaining design variables are fixed 
to Pareto optimal). We can see that criteria ~1 and &3 are antagonistic with respect to ~1: 
Similarly, criteria ~1 and ~6 are antagonistic with respect to ~3. These figures were produced in 
MOVI using the option graphs criterion vs. design variable I. 

EXPERIMENT 2. IMPROVING THE FEASIBLE SOLUTION SET BY CHANGING THE INITIAL INTER- 
VALS OF VARIATION OF THE DESIGN VARIABLES. In this experiment we are seeking to improve 
the feasible solution set obtained in Experiment 1 by using a new parallelepiped II1. Functional 
and criteria constraints were the same in both experiments. After 1024 tests using LPr sequences, 
the number of feasible solutions is 258 (compared to eight in Experiment 1 ), and the number of 
Pareto optimal solutions is 25 (compared to four in the previous experiment). Next, we com- 
bined feasible solution sets from both experiments and determined Pareto optimal solutions on 
the combined feasible solution set. The combined Pareto optimal set contains only 25 solutions, 
and all of them were obtained in Experiment 2. Thus, all solutions from Experiment 1 were 
improved. 

EXPERIMENT 3. IMPROVING THE FEASIBLE SOLUTION SET BY CORRECTING FUNCTIONAL 
CONSTRAINTS. As it has already been mentioned, owing to the difficulty of determining func- 
tional constraints, the feasible set is often determined incorrectly in applied optimization problems 
and the search for optimal solutions often loses any practical meaning. 

In Experiment 2 after 1024 trails, 419 did not satisfy the functional constraints: 333 solutions 
in the second and 86 solutions in the third. All solutions satisfied the first constraint. See 
Figure 10. Figure 10 is a table of functional failures in the third functional constraint. As 
indicated in Figure 10 the relation f3(a ~) < 27'holds for all 86 vectors. Only 9 of the 86 vectors 
are shown. 



16 R. STATNIKOV et al. 

. . . . . . . . . . . . . . .  87oi . . . . . . . . . . . . . . . . . . . .  ~ . ~ :  

...................... ~7; ................................... ~ ! ~  

~39 ~eS,1224=.~! 

Figure 10. Table of functional failures. 

It follows from Figure 10 that if in place of the given constraint equal to 27, we had made a 
small concession to a value of 26.85, these nine vectors would not only have satisfied the relaxed 
constraint, but would also have entered the test table, since this constraint is the last. (Note that 
the constraints are verified consecutively.) Figure 10 was produced in MOVI using the option 
tables o/functional failures. 

An analysis of the tables of functional failures allowed the designer in Experiment 3 to make 
relatively small concessions from the initial values 33 < f2(~) and 27 < fs(o) to 32.5 < f2(c~) 
and 26.5 ___ fs(a). As compared with Experiment 2 another 24 vectors entered the test table. 
Thus, with a relatively small relaxation of the initial functional constraints in Experiment 2, 
the number of feasible solutions in Experiment 3 increased from 258 to 282, and Pareto optimal 
solutions from 25 to 26. Note that in Experiment 3, there is no need to carry out additional 
trials. The 24 vectors that were found were obtained solely by relaxing the indicated functional 
constraints. 

To summarize, an analysis of the results obtained in Experiment 1 showed the advisability of 
correcting the design variable constraints. As a result, in Experiment 2, the number of feasible and 
Pareto optimal solutions were significantly increased from 8 and 4 to 258 and 25, respectively. 
None of the solutions found in Experiment 1 entered the combined Pareto set; i.e., all these 
solutions were improved. Experiment 3 showed that it was possible to increase the number of 
feasible and Pareto optimal solutions by correcting the functional constraints. These numbers in 
compawison with Experiment 2 increased to 282 and 26, respectively. 

REMARKS. 

• One measure of improving the statement of a problem is an increase in the efficiency 
coefficient 3". The quantity 3' may be defined as the ratio of the number of feasible solution 
to the number of trials. Thus, in Experiment 1, 7 = 8/1024 = 0.0078. In Experiment 2, 
it increased to 3" = 258/1024 = 0.252, and in Experiment 3, thecoefficient increased even 
more to "y = 282/1024 = 0.2754. 

• Comment on the designer's behavior. The designer makes a decision about modifying the 
initial statement of the problem after analyzing the obtained results, i.e., how much the 
main performance criteria have been improved. 

7. A N A L Y Z I N G  C O M P U T A T I O N A L L Y  E X P E N S I V E  P R O B L E M S  

For many applied optimization problems, it is necessary to carry out a large-scale numerical 
experiment in order to construct the feasible set. For this reason, a search for optimal solutions 
is often not carried out at all. We will mention a few types of difficult problems. 
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The first type: problems with stringent constraints, as a result of which we obtain small values 
of 7, for example, 7 << 0.001. (Recall that 3' is the ratio of the number of feasible solutions to the 
number of trials.) In this case, even if the time for calculating one criteria vector is fairly short, 
it takes a long time to find at least one feasible solution because of the need to carry out a large 
number of trials. These problems are said to be like "looking for a needle in a haystack". 

The second type: problems with a high dimensionMity of the design variable vectors (e.g., thou- 
sands of design variables). It  is obvious that these problems als~ require a large-scale numerical 
experiment with hundreds of thousands or millions of trims. 

The third type: problems with complex mathematical models, where calculating one criteria 
vector requires a lot of computer time, i.e., from ten or more minutes to many hours. For example, 
this includes many problems with finite element models. 

Below we consider two approaches to solving these problems. 

7.1. P a r a m e t e r  Space  I n v e s t i g a t i o n  in Pa ra l l e l  M o d e  

The software package MOVI allows one to tackle computationally expensive problems in parallel 
mode, so that the desired number of trials N is distributed among k computers [21]. Thus, each 
computer finds a feasible solution set for its own subproblem (by conducting ~ N/k trims). Next, 
all feasible solution sets are combined and a single Pareto optimal solution set is constructed. 

EXAMPLE 1. Consider a system with 1000 design variables. The design variable vector is given 
by a = ( a l , . . . ,  c~1000), 1 _< ai _< 2, i -- 1 , . . . ,  1000. We are seeking to minimize simultaneously 
the following performance criteria tip, (a): 

1000 

(I}l = E OLi' 
1 

1000 299 
2 

(I)2 = E OQ 
300 i 

( 1 4 0 0 1  / 2 9 9 \  o3 cos/ o 9 
\ 300 / 
700 / /1 •00 ) ) 5 

T -  sin Z ,  
1 701 

Whife analyzing the test tables, we formulated the following criteria constraints: 

til < 1502.2254, 

ti2 < 930.4528, 

ti3 < 0.1624, 

4)4 < 10.3851. 

(16) 

(17) 

We investigated the parameter (design variable) space and criteria space using four computers 
simultaneously. Each computer conducted 50,000 trims using a random number generator. The 
four computers conducted a totM of 200,000 trials, which resulted in 4297 feasible solutions, 
3' = 4297/200000 ~ 0.02. The CPU time was approximately eight hours per computer using 
Intel Xeon 2.4 GHz, 2 GB RAM workstations. 

After we combined all 4297 feasible solutions, we obtained 326 Pareto optimM ones. The 
efficiency coefficients for the Pareto optimal and feasible solutions are equal to 3'p = 0.0016 and 
7 / =  0.021, respectively. 
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EXAMPLE 2. The  following performance cri teria need to be minimized:  

5O 

~I)1 = E O~i' 
1 

50 20 
2 

21 1 

( 400/ (18) 

We have 50 design variables with the  following intervals of variat ion:  1 _< a i  < 2, i = 1 , . . . ,  50. 

We are also given a priori  cri teria constraints  

(I)~* = 20.384, 

¢~* = 23.570, 

(I)~* = -120 ,600 .  

A tota l  of 250,000 tr ials  was conducted on five computers  (50,000 tr ials  each) using a random 

number generator .  The  combined feasible solution set was constructed,  and the  combined Pareto 
opt imal  set was const ructed on it. 

Table 2. Pareto optimal solutions obtained on five computers. 

Number of a Computer 
Feasible and Pareto 
Optimai Solutions 

23 (20) 
14 (11) 
13 (10) 

19 (19) 

IS (la) 

The Contribution of Each 
Computer to the Combined 
Pareto Optimal Solution Set 

14 
9 

8 

14 

12 

The results of the invest igat ion are presented in Table 2. The combined feasible set contains 87 

solutions, and the  combined Pare to  opt imal  set contains 57 solutions. For example,  da t a  from 
the first computer  are given in the first row: 23 feasible solutions, 20 of which are Pare to  opt imal  
solutions; the  first computer  contr ibutes  14 vectors to  the combined Pare to  opt imal  solution 

set. The c<ntribution of each computer  to the combined Pare to  op t imal  solut ion set i s shown 
in the last column. The  coefficients for the Pare to  opt imal  and feasible solutions are equal to 
7p = 0.000228 and 7f  = 0.000348, respectively. 

The dependencies between cri teria obta ined on the first computer  after carrying out  50,000 
tr ials  are shown in Figure 11. This analysis Shows the complex relat ionships between the cri teria 

and the local izat ion of the  feasible solutions. 
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}~ , -~ .~ . , , , , : , , , Ig  . . . . .  !9]T::? ~ : IT@_, ,~P :LU-# I~ :~ .~  ................................ :I. 
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, :  : . . . . . . .  : : # 

(a) Criterion 1 vs. criterion 2. (b) Criterion 2 vs. criterion 3. 

I 

(c) Criterion 1 vs. criterion 3. 

I 

~ . . 5  . . . . . .  . ' . . .  : . . . . . . . . .  . . . . . . . .  . :  . . . . .  : . . . ~ ,  . . . . .  

(e) Criterion 1 vs. criterion 4. 

(d) Criterion 2 vs. criterion 4. 

(f) Criterion 3 vs. criterion 4. 

Figure 11. Dependencies between criteria. The  regions of the  feasible and Pareto 
optimal  solutions are circled. 

7.2. A p p r o x i m a t i n g  a True  M a t h e m a t i c a l  M o d e l  

In Section 2, we defined the solutions satisfying all constraints as feasible solutions. In cal- 
culating them, we turned to a mathematical model that we assume to be true. If we replace 
the true model with an approximate one, we consider the solutions obtained using this model to 
be approximate feasible and approximate Pareto optimal solutions. The essence of the approach 
under consideration is as follows: 

• A large number of trials is conducted using the true model in the PSI method. The 
solutions ~ ( ~ )  that entered the test tables are determined. 

• An approximate mathematical model is constructed using machine learning algorithms 
(e.g., [22]), and the approximate feasible solutions ~P(a i~) (satisfying all constraints) are 

determined by means of the PSI method. 
• The obtained approximate feasible solution set is checked for feasibility. To do this, we 

turn to the true model and calculate the vectors ~(a~p) for each s ip. 
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The effectiveness of using an approximate model may be judged by the following: 

(I) time required to obtain one feasible solution using an approximate and a true model (an 

approximate model may work much faster than the true model); 

(2) the number of references to the true model to check the feasibility of approximate feasible 

solutions (calculation of the values (~(~ip)); 

(3) statistical estimates of the quality of the approximate model and the obtained solutions. 

in Section 8.4, we give an example of obtaining solutions using an approximate model. 

8. O T H E R  C L A S S E S  OF P R O B L E M S  A N D  T H E I R  S O L U T I O N S  

Solution of the problems described below is based on the multicriteria design method discussed 
in Section 6. 

8.1. M u l t i c r i t e r i a  O p t i m a l  Des ign  of  Con t ro l l ed  E n g i n e e r i n g  S y s t e m s  

The operating efficiency of the majority of complex engineering systems (automobiles, air- 
planes, or their engines) strongly depends on the perfection of the system design and the quality 
of control in specific operating conditions. 

The traditional approach to creating controlled engineering systems involves the solution of 
two optimization problems: the optimal design problem and the optimal control problem. These 
problems are solved successively and independently of each other. As a rule, the requirements 
for the efficiency of the automatic control system are not taken into account at the design stage. 
This philosophy is reflected even in the structure of organizations involved in the development 
of complex engineering systems; in such organizations, design and control problems are solved in 
different departments. 

In this context, the designer determining optimal control laws has to deal with rigidly fixed 
structural variables (design variables) of the object, which substantially reduces the possibilities 
of improving the object's operating efficiency. In fact, the results of the optimal design serve as 
input data for solving optimal control problems and therefore play a determining role for both 
the control itself and the efficiency of the entire system. 

Thus, it is reasonable to combine the optimal design problem with the optimal control problem 
to form a single problem of optimal design of controlled systems. The proposed solution of this 
problem would involve simultaneous optimization of design variables and control laws. 

Consider an engineering system whose efficiency can be evaluated by a number of particular 

performance criteria ~v, v =- l,...,k. It is important that the set of criteria ffPv comprise 

both 'p~re design' criteria ~d,, v = I,..., kl and control criteria ~c~, v = kl + I,..., k. The 

design criteria can be the mass of the system, the stiffness of the structure, stability margins, the 

efficiency of the system operation in various operating modes, and so on. Some of the control 

criteria may coincide with design criteria (e.g., the efficiency of the system operation), while the 

other control criteria may evaluate specific control characteristics, such as the transition time 

between operating modes, control stability, energy consumption for control , etc. 

The efficiency of this engineering system is determined by a set of design variables (structural 

parameters) C~d = (C~dl,...,~dp) and a set of control laws u ---- (Ul,...,Uz), where p is the 

number of design variables and z is the number of controlled elements. In general, control laws 

are functions of time and the variables wi, i -- 1,...,q characterizing the operating mode of 

the system, so that u = f(t,w). The number of 'mode variables' w~ and their physical sense 

are specific for each engineering system. For example, the mode variables of a gas turbine 

aircraft engine are the position of the engine control lever; reduced rotation rates nr of the 

rotors; pressure, temperature, and humidity of the atmospheric air; and the Mach number. We 

represent the control vector by a set of control variables ~c =- (~cl,..., (~cm). For example, these 

variables can be the coefficients of the function u = f(t, w). We emphasize that any particular 
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performance criterion of an engineering system can be represented as a function of the design 

variable vector (~d and the control variable vector c~c, so that ~v ---- ~v(~d, ~c). 

The traditional approach to optimizing controlled engineering systems results in the deter- 

mination of a single design variable vector C~d (the design of the system) and a corresponding 

single control variable vector (~c (the set of control laws). This approach does not always make 

it possible to investigate all potentials for increasing the efficiency of a control system. 

A more efficient approach to the multicriteria optimization of controlled engineering systems 

employs, for a single design variable vector, not a single control variable vector, but a set of 

vectors, each of which determines the optimal set of control laws for each purpose (operating 

mode). All the control variable vectors are stored in a computer memory and may be chosen in 

accordance with a specific control purpose, thus implementing the optimal control. When using 

this approach, one has, first of all, to construct a set b of feasible solutions c~ = (ad, ~c~) C D, 

i = I,... ,Pa, where p~ are sets of control laws (specified by the control variable vectors ~c~) 

that correspond to each design (specified by the design variable vector ad). Then it is necessary 

to determine a set /5 C_ b of Pareto optimal designs and to select from this set a design c~ ° = 

(O~d,O~ci)O 0 E /5, i . . . .  1, ,pao that is most preferable from the viewpoint of the designer. 
In typical multidimensional problems, the number of design variables and control variables 

may reach many dozens, and thus it is extremely difficult to construct the feasible set /5. For 
this reason, we suggest solving practical problems in stages as follows. 

STAGE 1. Determine the feasible set D consisting of the design and control variable vectors, 
= (C~d, c~c). As a result of this stage, only one set of control laws (represented by the control 

variable vector ac) corresponds to each feasible design c~. 

STAGE 2. To estimate the limiting performance of the system, one must solve the multicriteria 
problem of optimizing the control variables with respect to the control criteria 4~cv, v = kl + 
1 , . . . ,  k for all feasible designs. In other words, for each fixed ad from the set D, by varying 
only control variables ac, we construct the vectors (ad, aci) E /) in which to any ad there 
correspond p~ Pareto optimal control laws. To complete this stage, we determine the set t5 C_/) 
of Pareto optimal solutions. 

0 o STAGE 3. Based on the analysis of the set/5, select the most preferable solution s ° = (ad, ac~), 
i = 1,. . . ,p~o. 

If the number of control or/and design variables is large, construction of the s e t / )  requires 
a rather extensive numerical experiment. Conducting such an experiment is sometimes either 
difficult or even impossible. In this case, in Stage 1, we select from the set P _C D of Pareto 
optimal solutions a subset of most acceptable vectors aJ = (a~, aJ). Then for each of the 

selected a~ we solve the multicriteria control problem in accordance with Stage 2. 
The effectiveness of this approach was demonstrated in the search for optimal design variables 

and control laws for a multistage axial flow compressor of a gas turbine aircraft engine and for a 

robot [3]. 
The above strategy also allows one to reach the maximum capabilities of efficiency of complex 

engineering systems by the choice of most preferable design from the obtained set and by imple- 
mentation (for example, on an airborne computer) of different control laws optimal for different 
purposes and operating modes of the engineering system. 

8.2. M u l t i c r i t e r i a  Ident i f i ca t ion  

One of the fundamental problems in engineering optimization is determination of the adequacy 
of the mathematical model for the actual object. Without estimating the model's adequacy, the 
search for optimal design variables has no applied sense. But what is the measure of adequacy? 
To what extent can we trust one model or other? In other words, we must ensure that our model 
is adequate to the system under study [1-4]. 
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We denote by ~ ( a ) ,  v = 1 , . . . ,  k, the criteria resulting from the analysis of the mathematical 
model that  describes a physical system, where ~ -- (~1, . . .  ,c~) is the vector of the parameters 
of the model. The criteria (9 c (c~) can be functionals of integral curves of differential equations or 
functions of the vector c~ that  are not associated with solutions of differential equations. 

Let ~exp be the experimental value of the V th criterion measured directly on the prototype. 
Suppose there is a mathematical model or a hierarchical set of models describing the system's 
behavior. Let • (11~ ~_4}~xpll ' i 1 ~ _  exp . . . .  , ~k II), where I1' II is a particular adequacy (closeness, 
proximity) criterion. As it has already been mentioned, this criterion is a function of the difference 

c -- Q~exp (~)exp (error) ~v - v  • It  is often given by ( ~  --~J~evxp)2 o r  4, c - ( I  )exp If the experimental values ~ .  , - - v  --~) " 

v ---- 1, k are measured with considerable error, then the quantity ~ x p  can be treated as a random 
variable. If this random variable is normally distributed, the corresponding adequacy criterion 
is expressed by M{]I~ ~ - ~expll}, where M{I I • II} denotes the mathematical expectation of the 
random variable II " II- For other distribution functions, more complicated methods of estimation 
are used, for example, the maximum likelihood method. 

We formulate the following problem by comparing the experimental and calculated data to 
determine to what extent the model corresponds to the physical system and find the model 
variables. In other words, it is necessary to find the vectors c~ ~ satisfying conditions (1) and (2) 
and, in addition, the inequalities 

II s - sx ll-< (19) 

Conditions (1), (2), and (19) define the feasible solution set Do. Here, (9~* are criteria con- 
straints that  are determined in the dialogue between the designer and a computer. To a consid- 
erable extent, these constraints depend on the accuracy of the experiment and the physical sense 
of the criteria <I%. Examples of solving identification problems are described in [2-4,8,23]. 

8.3. O p e r a t i o n a l  D e v e l o p m e n t  of  P r o t o t y p e s  

The problem of operational development of a prototype and its improvement is one the most 
pressing and complex design problems. This problem is encountered in the production of machine 
tools, automobiles, ships, and aircrafts, where enormous amounts of money are spent on the 
operational development of the object with limited time to solve the problem. 

We suggest carrying out the operational development of prototype in two stages. In the first 
stage, accelerated tests (for instance, bench tests) are performed. These tests allow us to identify 
the mathematical model of the object and to determine its parameters. Thus, the set D~, is 
found as a result of multicriteria identification. In the second stage, the designer formulates 
and solves the multicriteria optimization problem. We construct the parallelepiped H in Do, 
determine the vector of performance criteria, and find the feasible solution set D .  To do this, 
we use the mathematical model whose adequacy was established in the first stage. Based on 
the optimization results, improvements to the prototype are made, and then the bench tests and 
full-scale test are conducted. This cycle is repeated until the designer decides to terminate the 
operational development. 

Let us summarize the characteristic features of these problems: 

• The designer has insufficient information about design variable constraints before solving 
identification problems. 

• The presence of strong design variable, functional, and criteria constraints (the object 
already exists and we need to update it). 

• High dimensionality of criteria vector. For complex systems, the number of particular 
proximity criteria used to evaluate the adequacy of the mathematical model can reach 
many dozens, e.g., a 65-criteria identification problem of operational development of a 
vehicle was solved by application of the PSI method and is described in [2]. 
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Figure 12. Approaches to solving problems of improving a prototype. 

Some ways of solving problems of operational development of prototypes are considered below. 
Suppose we have a prototype that needs to be improved. The criteria vector of the prototype 

is known, ~P = ((I)P,..., 4~P). Figure 12a shows the criteria space of the prototype vector (~P, 
while Figure 12b shows the design variable space of the initial parallelepiped H. 

It  is desirable to find the design variable vector ai that satisfies the inequalities 

and, on the set of Pareto optimal vectors, determine the most preferred solution @ (n °), surpassing 
the prototype in all criteria or at least the most important ones. Let us consider two situations: 

1. A solution @P exists. However since the designer has only a rough idea of the possible 
search limits for many of the identified design variables, the identified vector is usually 
aP ~ 17. In view of this, the initial parallelepiped H, and in a number of cases, the 
mathematical model itself, must be repeatedly corrected. 

2. Equally important is the situation where it is impossible to identify the vector aP, for 
example, when the designer's wishes for local criteria ~,P, v -- 1 , . . . ,  k axe unattainable. 
Here, the search process of the prototype is very useful, since it allows one to define the 
compromise solution (I)(a °) that  in a sense is close to ~)P = ((I)~,..., ~ ) ,  if not in all local 
criteria ~P, then at least in the most important ones. Thus, we can answer the question 
of how to improve the prototype and by how much. 

Suppose a Pareto optimal solution set P(H) is constructed given some initial constraints, but 
the designer is not satisfied with the obtained solutions, Figure 12a. Based on an analysis of 
the results in II, the statement of the problem is corrected, for example, the design variable 
constraints, and a new parallelepiped II1 is constructed. Figure 12b shows 171, while Figure 12a 
shows the Pareto optimal set P(H1) corresponding to it. Figure 12a also shows Pareto optimal 
sets P(II) ,  P(HI) ,  and P(II2). The region of best approximations to (I)v obtained as a result of 
investigating H, H1, and H2 consists of the curves AB and BC: AB belongs to P(H1) and BC 
belongs to P(H2). The solution of similar problems includes correcting all restraints according 
to the results of an investigation of the criteria space and design variable space. 

EXAMPLE 1. We will consider the problem of improving a prototype using the example of a 
dynamic system (11). 

Let us consider investigation in parallelepiped H, see (12). The criteria vector of the prototype 
is given 

(I)p = (32.616; 41.231; 20.633; 970; 10.316; 0.91978). 

Recall that  the first two indices ~P = 32.616 and ~ = 41.231 are pseudocriteria, and the 
remaining four ~ ,  ~ ,  ~5 p, (I)~ are criteria. The boundaries of the initial parallelepiped are 
defined in (12). A priori criteria constraints are stated (some of them are larger than the values 
of the criteria ~P), in particular, 

~)** = (34.616; 42.231; 20.733; 1030; 10.416; 0.92078); 

in addition, for the prototype, the requirements f l  < 1100, f2 > 33, and f3 > 24 must be fulfilled. 
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Figure 13. Pareto optimal solutions (criteria vectors) in parallelpiped FI. 
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(b) Third design variable. 
Figure 14. Histograms of the distribution of feasible solutions in parallelepiped II. 

A total  of 1024 trials was conducted in H, and 18 feasible solutions were found, of which eight 
were Pareto optimal,  see Figure 13. In Figure 13, criterion 1 and criterion 2 are pseudocriteria. 
Analysis of the obtained results showed tha t  vectors ~720,  ~448,  and # 7 2  are quite close to the 
prototype in the criteria. They  are slightly inferior to it in the fourth criterion and surpass it in the 
third, fifth, and sixth criteria. As a result of analyzing the boundaries of the design variables, the 
designer makes a decision on further investigations by decreasing the lower intervals of variation 
of the first and third design variables. The  advisability of this can be seen from the histograms 
of the distribution of feasible solutions (see Figure 14). Based on this, a new parallelepiped II1 
is constructed, see Table 3. 

Table 3. Boundaries of the variable parameters in the two experiments. 

5 1  5 2  ~ 3  ~ 4  ~ 5  

II [1.1. 106; 2.0.106] [4.0- 10'] I950; 1050] [30; 701 [80; 1201 
Hi [0.9. 106; 1.2. l0 s] [3.5. 104; 5.50.104] [900; 10101 [25; 65] 170; 1301 

Now we perform investigation in parallelepiped H1. A total  of 1024 trials was conducted with 
the criteria constraints given above. 110 feasible solutions were found, 13 of which were Pareto 
optimal,  where eight of these (~101, ~:793, ~441,  #126,  ~854, ~378,  ~390,  ~882) surpassed 
the prototype ffP in all four criteria, see Figure 15. Analysis of the feasible values of the design 
variables and the histograms showed the possibility of a further search for the best  solutions by 
correcting the constraints on the first and third design variables. 

EXAMPLE 2. THE PROBLEM OF IMPROVING THE PROTOTYPE OF A SHIP. The  purpose of 
this example is to demonstra te  multicriteria analysis in six experiments  4 (in four parallelepipeds) 

4Lp~ sequences were used in Experiments 1-4 and 6, and a random number generator in Experiment 5. We will 
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Figure 15. Pareto opt imal  solutions (criteria vectors) in paxalleiepiped H1. 

resulting in an improved prototype, see [23]. We will omit a description of the mathematical model 
and briefly illustrate some elements of multicriteria analysis. Among the particular features of the 
problem are the high dimensionality of the design variable vector (45 design variables) and the 
difficulties of improving a reasonably good prototype under strong constraints (seven functional 
constraints and nine pseudocriteria). Six criteria were optimized: (Ih is the propulsion power 
factor (%) (rain); ~2 is the electrical power factor (%) (min); (~3 is the volume factor (%) (max); 
~4 is the region factor (%) (max); (I)5 is the weight factor (%) (max); and ~)6 is the cost (min). 

In view of the high dimensionality of the design variable vector, 200,000 tests were conducted 
in each of the first five experiments and 500,000 in the sixth experiment. After each of the first 
three experiments, the constraints were corrected according to the results of analysis of the test 
tables, tables of feasible and Pareto optimal solutions, tables of functional failures, histograms 
of feasible solutions, and graphs of dependencies of criterion versus criterion and criterion versus 
design variables. Then a new experiment in a new parallelepiped was conducted. The fourth 
and sixth experiments were conducted in the fourth parallelepiped. Starting from the specified 
values of the prototype, design variable (parallelepiped H1), functional, and criteria constraints 
were formulated, with the fimctional and criteria constraints being weakened in comparison with 
the prototype. 

A total of seven feasible solutions (all of them Pareto optimal) was obtained in the first ex- 
periment (parallelepiped H1). No interesting solutions were obtained from the designer's point 
of view. Based on the results of an analysis of the feasible solutions, the ranges of some of the 
design variables were corrected and parallelepiped H2 was constructed. 

The second experiment (parallelepiped H2) also did not lead to new results. There were nine 
feasible and three Pareto optimal solutions, respectively. Based on the results of analysis of the 
second experiment, the design variable constraints were corrected and thus parallelepiped 1-[ 3 

was constructed. The functional constraints mad criteria constraints were also corrected. These 
changes formed the essence of the third experiment. 

Three feasible (they axe also Pareto optimal) solutions were found in the third experiment 
(parallelepiped II3): ~17311, ~108455, and ~71279. These solutions attracted the attention of 
the designer. For cxamp!c, design ~-!08455 proved to be better than the prototype in five ofthe six 
criteria. The smaller number of feasible and Pareto optimal solutions in comparison with the first 
and second experiments was caused by the considerable strengthened criteria constraints. Based 
on the results of an analysis of the third experiment, the search region in the fourth experiment 

restrict ourselves to describing the experiment with LP~ sequences. 
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was limited by the design variable vMues of the three specified designs. Thus, parMlelepiped II4 
was constructed. 

In the fourth experiment (parMlelepiped H4), the criteria constraints were strengthened in 
comparison with the third experiment (the first dialogue of the designer with the computer). 
However, the number of the feasible and Pareto optimM solutions turned out to be rather high 
(2161 and 281, respectively). This is due to the fact that the search region in parMlelepiped II4 was 
substantially smaller than in parallelepiped H3 for the same number of tests. Many solutions of 
interest to the designer were found. After anMyzing the obtained solutions, an attempt was made 
to improve the prototype in all criteria simultaneously. Therefore, in the second dialogue, the 
criteria constraints corresponded to the values of the prototype criteria. As a result, 20 Pareto 
optimal solutions surpassing the prototype in all criteria were found. Thus, the problem of 
improving the prototype has been solved. 

Two dialogues were also conducted in the sixth experiment (parMlelepiped H4). In the first 
dialogue, the criteria constraints on the second and sixth criteria were strengthened in comparison 
with the first dialogue in the fourth experiment. A totM of 500,000 trims was conducted, and 627 
feasible and 138 Pareto optimal solutions, respectively, were found. Many of them were very 
interesting for the designer. In the second dialogue, the criteria constraints corresponded to the 
values of the prototype criteria. Eleven Pareto optimM solutions surpassing the prototype in 
M1 six criteria simultaneously were found. In comparison with the second diMogue of the fourth 
e~periment~ we obtained six new solutions. A combined set of Pareto optimM solutions surpassing 
the prototype in all six criteria contains 26 solutions, five of which (~16907, ~164167, #191033, 
~¢293036, ~293036, ~364925) are given in Table 4. 

Table 4 Experimental results. 

Experiments ~P 1% 
(min) 

Prototype 2.48 

Fourth experiment, 2.28 
•16907 

Fourth experiment, 2.22 
~164167 

Fourth experiment, 2.42 
~191033 

Sixth experiment, 2.40 
#293036 

Sixth experiment, 2.37 
~364925 

~2% ~3% ~4% 
(min) (max)  (max) 

10.00 11.77 14.33 

8.10 14.6 18.3 

3.03 19.6 23.7 

7.35 15.1 18.7 

1.55 23.4 27.4 

2.56 24.8 28.8 

¢5% 4,6 
(max) (min) 

1.01 555 

5.68 547 

8.46 549 

8.16 544 

2.10 543 

5.14 547 

REMARK. There were similar constraints in the fourth and fifth experiments. As mentioned 
above, a random number generator was employed in the fifth experiment to investigate the 
design variable space. A total of 2169 feasible and 184 Pareto optimal solutions was found. The 
best solutions in the fourth and fifth experiments turned out to be nearly identical. 

Some elements of the performed multicriteria analysis are shown below. Histograms of the 
distribution of feasible solutions for the 1 st and 37 th design variables in the first four experiments 
are shown in Figure 16. It is clear that a good distribution of feasible solutions was obtMned 
only in the fourth experiment. The dependencies between criteria (third experiment) are shown 
in Figure 17. The regions of the three specified designs are circled. 

In summary, we will draw attention once again to some features and strategy of problem 
solving. 

• The dimensionality of the design variable vector was high (equal to 45). Therefore, it was 
necessary to carry out a large number of trims. A totM of 200,000 trials was conducted in 
each of the first five experiments and 500,000 in the sixth. 
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(e) Third experiment. 
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(d) Second experiment. 
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(f) Third experiment. 

(g) Fourth experiment. (h) Fourth experiment. 

Figure 16. Histograms of the distribution of feasible sets for the 1 st and 3 7  th design 
variables. 

• ' Multicriteria analysis showed the necessity of repeated correction of the constrMnts, and 
because of this, a series of experiments was performed. Each subsequent experiment was 
carried out on the basis of  the previous one (step by step). In the first three experiments, 
we obtained a small number of feasible solutions; and it was only in the third experiment 
that we came close to satisfactory results. An analysis of these results allowed us to define 
the region of good solutions where subsequent experiments were carried out. 

• Improvement of the prototype in all criteria occurred in the second dialogue of the fourth 
and sixth experiments. 

Owing to the difficulties of correctly stating engineering optimization problems, designers end 
up solving ill-posed problems. By this example, we demonstrated how to state and solve similar 
problems correctly on the basis of the PSI method. 

8.4.  M u l t i c r i t e r i a  A n a l y s i s  f r o m  O b s e r v a t i o n a l  D a t a  

For this class of problems, there are no a priori  specified mathematical models. However, 
there are available observations in the form of tables that give an indication of the behavior 
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(a) Criterion 6 vs. criterion 1. (b) Criterion 5 vs. criterion 1. 

(c) Criterion 6 vs. criterion 2. (d) Criterion 5 vs. criterion 3. 
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(e) Criterion 6 vs. criterion 3. (f) Criterion 4 vs. criterion 3. 

Figure 17. Dependencies between criteria in the third experiment. The regions of 
the feasible and Pareto solutions are circled. 
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of the  sys tem under  investigation. These problems are often encountered in medicine, biology, 

economics, mater ia ls  science, information science, and other fields. An  approximate  mathemat -  
ical model  is constructed on the basis of the  observations wi th  the  use of classification and 
regression algorithms. Some algori thms for construct ing approximate  cri ter ia  functions include 
regression by neural  networks, suppor t  vector machine (SVM) regression, and mult iple linear 

regression [22,24-26]. Below we describe a general s t ra tegy for mul t icr i ter ia  analysis from obser- 
vational  data .  

STEP 1. OBTAINING OBSERVATIONAL DATA AND CONSTRUCTING AN APPROXIMATE MODEL. 
Suppose we have an exper iment  with N observations represented by  an N x M matr ix ,  where M 
is the  to ta l  number  of observed variables (criteria and design variables).  The  approximate  cri teria 
functions are constructed using machine learning algorithms. The  qual i ty  of approximate  cri teria 
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functions is evaluated by statistical metrics, such as R 2 (fraction of variance explained by a model) 
and absolute, relative, and squared errors. Then functions with the best evaluation performance 
are chosen for the approximate mathematical model. 

STEP 2. MULTICRITERIA ANALYSIS: CONSTRUCTION OF THE APPROXIMATE FEASIBLE SOLU- 

TION SET AND SEARCH FOR THE BEST SOLUTIONS. 

EXAMPLE. Below we show the process of constructing the approximate feasible solution set in 
problems in which only observational data are present. This example also illustrates principles 
of work with the approximate model described in Section 7.2. 

The collection of observational data depends on the specifics of the problem being investigated 
and is beyond the scope of the present work. In the present case, in order to obtain observational 
data, we referred to a true model (11) and, using the PSI method, conducted 4000 trials with 
a random number generator. As a result, we obtained a 4000 x 11 (M = 6 criteria + 5 design 
variables) matrix of observations. 

Using the observational data, we constructed approximate criteria functions by means of ma- 
chine learning algorithms. In our case, criteria ~3 and ~5 were determined using generalized 
neural networks for regression [24], while the remaining four criteria were reconstructed using the 
SVMTorch algorithm [25]. This choice was based on statistical estimates of the criteria functions 
obtained; the estimates of the best approximate functions are given in Table 5. These criteria 
functions constitute the approximate mathematical model. 

Table 5. Statistical estimates of the approximate criteria functions. 

Criteria R 2 Mean Absolute Mean Relative Mean Squared 

Error Error Error 

~1 0.999997 0.0361611 3.44387e - 005 0.00313826 

~2 0.999975 0.0121383 0.000329313 0.000357047 

~P3 0.810006 0.603323 0.119773 2.35193 

~4 0.999997 0.0361611 3.44387e - 005 0.00313826 

' : I '5  0.797901 0.368809 0.109251 0.778614 

~6 0.998594 0.0024371 0,00319643 7.67688e -- 006 

At this stage, we have an approximate model and we will use it with the PSI method. That is, 
we employed the PSI method to conduct 1024 trials using LPr sequences. We constructed test 
tables and obtained eight approximate feasible solutions ~ ' ( a  ~,) that satisfied constraints (i2), 
(14), and (15). These were vectors #288, ~336, #520, ~544, ~560, #672, ~896, and #1008. 

Since in this example we had access to a true model, the vectors a ~p were checked for feasibility 
by direct application of the true model and calculation of the values ~(a~p). Seven of the eight 
approximate feasible solutions indicated above were found to be feasible. 5 The eighth approximate 
feasible solution #1008 was nonfeasible because of errors in the approximate model. 

After constructing and analyzing the approximate feasible solution set, we corrected design 
variable constraints and determined a new approximate feasible set. This procedure was similar 
to the one described in Section 6.2. After 1024 trials with LP~ sequences, 311 approximate feasible 
solutions were identified, 218 of which turned out to be feasible. We note that in Experiment 2 
with the true model, there were 258 feasible solutions. 

In order to analyze the efficiency of the employed approximate model, we can use a metric 
equal to the number of feasible solutions found with the approximate model over the number 
of feasible solutions obtained with the true model, in the cases described above, this metric 
is 7/8 = 0.875 and 218/258 = 0.85, respectively. Further improvement of the efficiency of an 
approximate model is possible by improving the fit of the true criteria functions, especially for @3 
and @5. However, it is worth noting that we have already approximated the true model fairly 

5Recall that  eight feasible solutions were found from the true model, see Experiment 1 in Section 6.2. 
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well, such tha t  we have preserved the dependencies of cr i ter ia  on design variables and between 
criteria,  see Figures  18 and 19. 

To summarize,  mul t icr i ter ia  analysis can be carried out  in problems from observat ional  da t a  
by construct ing an approximate  model. This  analysis can be used to  predict  the  best  solutions 

and approaches to their  subsequent improvement .  

9 .  C O N C L U S I O N S  

One of the  main  causes of inefficient use of s t andard  opt imiza t ion  methods  for solving applied 
problems is t ha t  i t  is difficult for the  designer to  correct ly specify the  feasible solution set, and 
therefore, as a rule, one solves i l l-posed problems. The  problem of construct ing a feasible set 

is a fundamenta l  one and is usually not  addressed. The  PSI  me thod  has been created for the  
correct definition of the  feasible solution set. The MOVI software ( implementing the PSI  method) 

is a comprehensive system tha t  enables methodological ly  rigorous mul t ic r i te r ia  analysis. The 
mult icr i ter ia  analysis tools available in MOVI,  such as: 

• test  tables,  

• tables  of feasible and Pare to  opt imal  solutions, 
• tables  of functional  failures, 

• his tograms of feasible solutions, 

• graphs of dependencies of cri teria on design variables and dependencies  between cri teria 
allow us to: 

1. correct ly construct  and analyze the  feasible and Pare to  op t imal  solut ion sets, 

2. correct  the init ial  s ta tement  of the problem (design variable,  functional,  and cri teria 
constraints) ,  

3. make a decision about  the  most preferable solutions in the  Pare to  set, 

4. conduct  large-scale numerical  experiments  (with hundreds  of thousands  or millions 
of tr ials) ,  

5. solve many  problems tha t  unti l  recent ly were impossible to  optimize.  

Using the  PSI  method  as a basis,  it  is possible to solve mul t ic r i te r ia  problems,  such as design, 
identification, design of controlled systems, opera t ional  development  of prototypes ,  analysis of 

large-scale systems, and mul t icr i ter ia  analysis from observat ional  data .  

R E F E R E N C E S  

1. I.M. Sobol' and R.B. Statnikov, Selecting Optimal Parameters in Multicriteria Problems, (in Russian), Nauka, 
Moscow, (1981). 

2. R.B. Statnikov and J.B. Matusov, Multicriteria Optimization and Engineering, Chapman & Hall, New York, 
(1995). 

3. R.B. Statnikov and J.B. Matusov, Multicriteria Analysis in Engineering. Using the PSI Method with 
MOVI 1.0, Kluwer Academic, Dordrecht, (2002). 

4. R.B. Statnikov, Multicriteria Design. Optimization and Identification, Kluwer Academic, Dordrecht, (1999). 
5. R.B. Statnikov and J.B. Matusov, Use of P-nets for the approximation of the Edgeworth-Pareto set in 

multicriteria optimization, Journal of Optimization Theory and Application 91 (3), 543-560, (1996). 
6. P.O. Dyer, P.C. Fishburn, R.E. Steuer, J. Wallenius and S. Zionts, Multiple-criteria decision making, multi- 

attribute utility theory: The next ten years, Management Science 38 (5), 645-654, (1992). 
7. W. Stadler and J.P. Dauer, Multicriteria optimization in engineering: A tutorial and survey. Structural op- 

timization: Status and promise, In Progress in Aeronautics and Astronautics, Vol. 150, (Edited by M.P. Ka- 
mat), pp. 209-249, American Institute of Aeronautics and Astronautics, Washington, DC, (1992). 

8. V. Dobrokhodov, R. Statnikov, A. Statnikov and I. Yanushkevich, Modeling and simulation framework for 
multiple objective identification of a controllable descending system, In Proceedings of International Confer- 
ence on Adaptive Modelling and Simulation (ADMOS-PO03), Goteborg, Sweden, 29 September-1 October 
2003. 

9. E. Lieberman, Multi-Objective Programming in the USSR, Academic Press, New York, (1991). 
10. M.G. Parsons and R.L. Scott, Formulation of multicriterion design optimization problems for solution with 

scalar numerical optimization methods, Journal of Ship Research 48 (1), 61-76, (2004). 



32 R. STATNIKOV et al. 

11. M. Gobbi, G. Mastinu, D. Catelani, L. Guglielmetto and M. Bocchi, Multi-objective optional design of road 
vehicle sub-systems by means of global approximation, In Proceedings of the 15 tu European ADAMS Users' 
Conference, (2000). 

12. A. Bordetsky, B. Peltsverger, S. Peltsverger and R. Statnikov, Multicriteria approach in configuration of 
energy efficient sensor networks, In 43 ~d Annual A C M  Southeast Conference ACMSE 2005, Vol. 2, pp. 28- 
30, Kennesaw, GA, March 18-20, 2005. 

13. I. Yanushkevich, R. Statnikov, A. Statnikov and J. Matusov, MOVI  1.3 Software Package User's Manual, 
Certificate of Registration, United States Copyright Office, The Library of Congress, (2004). 

14. R.E. Steuer and M. Sun, The parameter space investigation method of multiple objective nonlinear program- 
ming: A computational investigation, Operations Research 43 (4), 641-648, (1996). 

15. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional 
integrals, Numerische Mathematik 2, 84-90, (1960). 

16. J.M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci. 86, 
844-874, (1960). 

17. E. Hlawka, Gleichverteilung auf Produkten von Sph~ren, J. Reine Angew. Math. 30, 1-30, (1982). 
18. H. Faure, Discr~pance de suftes associ~s a une syst4me de num4ration (en dimension s), Acta Arithmetica 

41, 337-351, (1982). 
19. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, J. Wiley, New York, (1974). 
20. H. Niederreiter, Statistical independence properties of pseudorandom vectors produced by matrix generators, 

J. Comput. Appl. Math. 31, 139-151, (1990). 
21. R. Statnikov, A. Bordetsky and A. Statnikov, Multicriteria analysis of real-life engineering optimization 

problems: Statement and solution, In Proceedings of the $th World Congress of Nonlinear Analysts (WCNA), 
Orlando, FL, June 30-July 7, 2004. 

22. V. Vapnik, Statistical Learning Theory, J. Wiley, New York, (1998). 
23. K. Ali Anil, Multicriteria analysis in naval ship design, Master's Thesis, Naval Postgraduate School, Monterey, 

CA, http : //theses. nps. navy. mil/05Mar_Anil, pdf, (2005). 
24. P.D. Wasserman, Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York, (1993). 
25. R. CoUobert et al., SVMTorch: Support vector machines for large-scale regression problems, Journal of 

Machine Learning Research 1 (February), 143-160, (2001). 
26. S. Chatterjee and A.S. Hadi, Influential observations, high leverage points, and outliers in linear regression, 

Statistical Science 1 (3), 379-416, (1986). 


