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Abstract—Applied optimization problems such as design, identification, design of controlled sys-
tems, operational development of prototypes, analysis of large-scale systems, and forecasting from
observational data are multicriteria problems in essence. Construction of the feasible solution set is
of primary importance in the above problems. The definition of a feasible solution set is usually con-
sidered to be the skill of a designer. Even though this skill is essential, it is by no means sufficient for
the correct statement of the problem. There are many antagonistic performance criteria and all kinds
of constraints in these problems; therefore, it is quite difficult to correctly determine the feasible set.
As a result, ill-posed problems are solved, and optimal solutions are searched for far from where they
sbould be. As a consequence, the optimization results have no practical meaning. In this work we
propose methods and tools that will assist the designer in defining the feasible solution set correctly.
© 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

For the constructing of the feasible solution set, a method called the parameter space investigation
(PSI method) has been created and successfully integrated into various fields of industry, science,
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and technology [1-12]. The PSI method most fully meets important features of engineering opti-
mization problems. This method has been used in designing the space shuttle, nuclear reactors,
unmanned vehicles, cars, ships, metal-tools, etc. The PSI method is based on the systematic
search in multidimensional parameter space by using uniformly distributed sequences. Another
key feature of the method is an interactive dialogue of a designer with the computer providing
valuable information about improvement of the basic criteria. In other words, the designer can
analyze potential gains and losses in making concessions for various criteria. The PSI method
is implemented in the MOVI (multicriteria optimization and vector identification) software that
can be executed on a standard PC {13].

The purpose of the present paper is to demonstrate techniques of correct construction of the
feasible solution set, multicriteria analysis tools provided by using MOVI, and their applications
for statement and solution of applied optimization problems. Many of the above problems until
recently appeared to be intractable.

The method for constructing and analyzing the feasible solution set presented in this paper
is oriented towards the statement and solution of real-life optimization problems. However, for
the purposes of demonstrating the potentialities of the PSI method, we will also consider some
relatively simple mathematical models. Despite their simplicity, the search for optimal solutions
by traditional methods presents great, sometimes insurmountable difficulties. We would like
to draw attention to the importance and complexity of multicriteria analysis, especially as it
concerns real-life problems.

This paper is organized as follows: formulation and solution of multicriteria optimization prob-
lems are discussed in Section 2. Some basic features of engineering optimization problems are
described in that section as well. The need to use uniformly distributed sequences to investigate
the design variable space is demonstrated in Section 3. The PSI method as a tool for formulating
and solving engineering optimization problems is presented in Section 4. The principal tools
of multicriteria analysis based on the MOVI software are presented in Section 5. Multicriteria
design, one of the fundamental engineering optimization problems, is described in Section 6.
Construction and analysis of the feasible sets for solving this problem are also discussed in this
section. In many cases, it is necessary to carry out a large-scale numerical experiment in order to
construct the feasible solution set. The MOVI program makes it possible to solve these problems
in parallel mode (Section 7). This section also discusses carrying out large-scale numerical exper-
iments in problems with approximate models. Finally, we consider solutions of other important
applied problems using the PSI method and MOVI software (Section 8): multicriteria optimal
design of controlled engineering systems, multicriteria identification, operational development of
prototypes, and multicriteria analysis from observational data.

2. FORMULATION AND SOLUTION OF
MULTICRITERIA OPTIMIZATION PROBLEMS

Let us consider an object whose operation is described by a system of equations (differential,
algebraic, etc.) or whose performance criteria can be directly calculated. We assume that the
system depends on r design variables ai,..., o, representing a point o = (ai,...,r) in the
r-dimensional space. In the general case one has to take into account design variable, functional,
and criteria constraints. The design variable constraints have the form

aj < o5 <aoft, j=1,...,7 _ (1)
The functional constraints can be written as follows:
Cr < file) < CF, I=1,...,¢t (2)

where the functional relationships fi(a) may be either implicit or explicit functions of c, and Cf
and C}* are the lower and the upper admissible .values of the quantity fi(c), respectively. The
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operation of the object is described by the particular performance criteria ®,(a), v =1,...,k.
All other things being equal, it is desired that these criteria ®,(«) be optimized. For simplicity,
we assume that functions @,(«a) are to be minimized.

The constraints (1) single out a parallelepiped II in the 7-dimensional design variable space.
In turn, constraints (1) and (2) together define a certain subset G in II. To avoid situations
in which the designer regards the values of some criteria as unacceptable, we introduce criteria
constraints in the form

B,(a) <BF,  wv=1,....k 3)

where ®3* is the worst value of criterion ®,() acceptable to the designer. (The choice of ®3* is
discussed in Section 4.)

Criteria constraints differ from the functional constraints in that the former are adjusted while
solving a problem and as a rule are repeatedly revised. Hence, unlike C} and C}*, reasonable
values of ®2* cannot be chosen before solving the problem.

Constraints (1)~(3) define a feasible solution set D, i.e., a set of design solutions that satisfy
the constraints, and hence, D € G C II. In a prior work [1], we have demonstrated that if
functions fij(o) and ®,(a) are continuous in II, then the sets G and D are closed.

Let us formulate one of the basic problems of multicriteria optimization. It is necessary to find
a set P C D such that

®(P) = min &(a), ©

where ®(a) = (®1(a),...,Px(c)) is the criterion vector and P is the Pareto optimal set.
We mean that ®(a) < ®(8) if for all v = 1,...,k, ®y(a) < ®,(B) and for at least one
vo € {1,..., k}, Buo(a) < By, (B).

DEFINITION. A point a® € D is called the Pareto optimal point if there exists no point o € D such
that &, (o) < ®,(a°) for all v =1,...,k and ®,,(a) < By, (a®) for at least one vy € {1,...,k}.
A set P C D is called a Pareto optimal set if it consists of Pareto optimal points.

In solving the above problem, one still has to determine the vector of design variables o € P,
which is the most preferred among the vectors belonging to set P.

2.1. Some Basic Features of Engineering Optimization Problems

Many engineering optimization problems share the following features:

o The problems are essentially multicriteria ones. As a rule, attempts are made to reduce
multicriteria problems to single-criterion problems. These numerous attempts to construct
a generalized criterion in the form of a combination of particular criteria have proved to
be fruitless.

e The determination of the feasible solution set is one of the fundamental issues of the
analysis of engineering problems. The construction of this set is an important step in the
formulation and solution of such problems.

e Problem formulation and solution comprise a single process. The customary approach
is that the designer first states the problem and then a computer is employed to solve
it. This approach is untenable, since one can rarely formulate a problem completely and
correctly before solving it. Thus, problems should be formulated and solved interactively.

s As a rule, mathematical models are complex systems of equations (including differential
and other types of equations) that may be linear or nonlinear, deterministic or stochastic,
with distributed or lumped parameters. Sometimes mathematical models have to be
derived from observational data using machine learning techniques.

o The feasible solution set can be multiply connected, and its volume may be several orders
of magnitude smaller than that of the domain within which the optimal solution is sought.

¢ Both the feasible solution set and the Pareto optimal set are nonconvex. In the general
case, as a rule, information about the smoothness of criteria is not present. These criteria
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functions are usually nonlinear and continuous; however, they may be nondifferentiable
as well.

e A typical problem may contain a large number of constraints, and the dimensionality of
the design variable and the criterion vectors may reach many dozens.

e The analysis of the feasible set is of importance for designers. It allows one to not only
correct the initial boundaries of the design variable ranges, but also to revise the original
mathematical models and criteria.

o A large-scale numerical experiment is often required in order to solve many real-life prob-
lems.

e Designers do not very often encounter serious difficulties in analyzing the feasible solution
set and Pareto optimal set and in choosing the most preferred solution. They have a
sufficiently well-defined system of preferences. Moreover, the aforementioned sets usually
contain a small number of elements.

3. UNIFORMLY DISTRIBUTED SEQUENCES
IN MULTIDIMENSIONAL DOMAINS

The features of the problems under consideration make it necessary to represent vectors o by
points of uniformly distributed sequences in the design variable space [1-5]. We briefly summarize
this approach below.

For many applied problems, the following situation is typical. There exists a multidimensional
domain in which a function or a system of functions is considered whose values are calculated at
certain points. Suppose that we wish to obtain some information on the behavior of the function
in the entire domain or in a subdomain. Then, in the absence of additional information about
the function, it is natural to require the points where the function is calculated to be uniformly
distributed in some sense within the domain. Suppose that we consider a sequence of points
P, Ps,...,P;, ... belonging to a unit r-dimensional cube K. We denote by G an arbitrary
domain in K™ and we denote by Sy(G) the number of points P; belonging to G (1 < ¢ < N).
The sequence P; is called uniformly distributed in K7, if

——SN]\(,G) = Vg, ()

lim
N—)m
where V(G) is the volume of the r-dimensional domain G. If, instead of the unit cube, a paral-
lelepiped II is considered, then the right-hand side of (5) transforms into V(G)/V (II).
The meaning of the definition is the following [1,3]: for large values of N, the number of points

of a given sequence belonging to an arbitrary domain G is proportional to volume V(G),
Sn(G) ~ NV(G). (6)

In solving engineering problems, one must commonly deal not with K", but with a certain
parallelepiped II, and, hence, move from the coordinates of the points uniformly distributed
in K" to those in II.

Let us formulate the following statements [1]: if points Q; with Cartesian coordinates (g1, ...,
qir) form a unmiformly distributed sequence in K™, then points a* with Cartesian coordinates
al, ..., al, where

a;':a;*l‘Qij(a;*_a;); j=1»27""r7 (7)
form a uniformly distributed sequence in parallelepiped II consisting of points (a1, ..., ®,) whose
coordinates satisfy the inequalities o} < o < ™.

Let at,...,cof, ... be a sequence of points uniformly distributed in II, and G C II be an

arbitrary domain with volume V(@) > 0. If among the points o, one chooses all the points
belonging to G, then one obtains the sequence of points uniformly distributed in G [1].
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3.1. Quantitative Characteristics of Uniformity

Let us fix a net consisting of the points P;,...,Py € K. To estimate the uniformity of
distribution of these points quantitatively, we introduce the quantity D(Pi,..., Py) called the
discrepancy, implying the discrepancy between the ‘ideal’ and actual uniformities.

Let P be an arbitrary point belonging to K and Gp be an n-dimensional parallelepiped with
the diagonal OP and faces parallel to the coordinate planes (Figure 1). Denote by Vg, the
volume of Gp and by Sy{Gp), the number of points P; which enter Gp and whose subscripts
satisfy the inequalities 1 <1 < N.

xﬂ
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» *
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Figure 1. Determination of the discrepancy.

The discrepancy of the points Py, ..., Py is
D(Py,...,Py) = sup |Sy (Gp) — NV, |, (8)
PeK

where the supremum is taken over all possible positions of the point P in the cube. It is natural
to consider that the smaller D(Py,..., Py) is, the more uniformly the points Py,..., Py are
arranged. Among uniformly distributed sequences known at present, the so-called LP, sequences
and P; nets are among the best ones in terms of uniformity characteristics as N — oo, see [1-5].

4. THE PARAMETER SPACE INVESTIGATION
METHOD IS A TOOL FOR FORMULATING AND
SOLVING ENGINEERING OPTIMIZATION PROBLEMS

In Section 2, we formulated the problem of multicriteria optimization and defined the feasible
solution set D, which is constructed using the values of ®}*, v = 1,...,k and some other con-
straints. Now we proceed by describing the parameter space investigation (PSI) method, which
allows correct determination of ®** and, hence, of the feasible solutions as well.

The PSI method consists of the following three stages.

STAGE' 1. COMPILATION OF TEST TABLES WITH THE HELP OF A COMPUTER. First, using
uniformly distributed sequences,! one chooses N trial points ol,...,a", satisfying relation (2).
Suppose that the designer can a priori indicate the constraints <i>:* to be imposed on the crite-
ria &, (), v = 1,...,k". ®** is the value of the v*" criterion for which the values &, (a) > &** are
known to be unacceptable. The constraints &**, if any, should be imposed successively. First,
one should calculate ®;(a?). If the inequality ®;(a’) < &%* is satisfied, then we proceed to
the calculation of the criterion ®3(at), and so on. The vectors o violating this inequality are

discarded. Finally, only the vectors of satisfying all constraints C¥, C#*, and ®** will remain.
g i v

i

Then, for each of the k' criteria a test table? is compiled so that the values of &,(al),. .., ®,(a)
are arranged in increasing order, i.e.,

P, (") <@, (o) <+ <, ('), v=1,...,k, K<k, (9)
where i1,19,...,iy are the numbers of trials (a separate set for each v).

Wery often LP, sequences are applied for these purposes. See also Section 5.2.
2Sometimes it is called an ordered test table, for example, see Figure 2. In an unordered table, the columns are
formed of the values of &,(a%), i=1,...,N,v=1,...,k
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The remaining criteria ®,{a), v = k¥’ + 1,...,k should be calculated only for the vectors
satisfying all inequalities of (9). By analogy with the criteria ®,(a), v = 1,...,k’ test tables
are constructed for the criteria ®,(a), v = &' + 1,...,k. Taken together, the k tables form a
complete test table.

STAGE 2. SELECTION OF CRITERIA CONSTRAINTS. This stage requires intervention of the
designer. When successively analyzing inequalities (9), the designer specifies the criteria con-
straints ®}*. Note that the method described is in practice convenient for a designer. Actually,
the designer has to consider one criterion at a time and specify the respective constraint. The
designer should not “balance” by reducing some criterion at the expense of the others: one an-
alyzes one test table and imposes the criterion constraint. Then one proceeds to the next table,
and so on. Note that the revision of the criteria constraints within the limit of the test tables
that have been constructed does not lead to any difficulties for the designer.

All ®%* should be the maximum values of the criteria ®,(c), which guarantee an acceptable
level of the object’s operation. If the selected values of ®}* are not a maximum, then many
important solutions may be lost, since some of the criteria may be contradictory. Note that when
solving practical problems, the designer often cannot determine the maximum values of criteria
constraints.

As a rule, the designer may set ®** equal to a criterion value &, (&) whose feasibility is beyond
doubt.

STAGE 3. VERIFICATION OF THE SOLVABILITY OF PROBLEM (4) WITH THE HELP OF A CoM-
PUTER. Let us fix a criterion, say ®,,(c), and consider the corresponding table (see (9)), and
let S; be the number of values in the table satisfying the selected criterion constraint

By, (@) <+ < By, (oF) < B =Dy, (@) (10)

One should choose the value of criterion ®,, for which S; is minimum among the analogous
numbers calculated for each of the criteria @,,.

Then the value of criterion @, is selected by analogy with ®,,, and the values of ®,,(c™),.. .,
®,,(a’s1) in the test table are considered. Let the table contain S; < S; values such that
®,,(0%) < @3*, 1 < j < So. Similar procedures are carried out for each of the criteria. Then if
at least one point can be found for which all inequalities (3) are valid simultaneously, the set D
defined by inequalities (1)-(3) is nonempty and problem (4) is solvable; i.e., D # §. Otherwise
D = §, and one should return to Stage 2 and ask the designer to make certain concessions in the
specification of ®}*. However, if the concessions are highly undesirable, then one may return to
Stage 1.and increase the number of points in order to repeat Stages 2 and 3 using the extended
test table.

The procedure is to be continued until D is nonempty and the designer finds the acceptable
solutions. Otherwise, the designer can attempt to improve these solutions by returning to Stage 1
and/or Stage 2. The Pareto optimal set P is then constructed in accordance with the definition
presented in Section 2. This is done by removing those feasible points that can be improved with
respect to all the criteria simultaneously.

Let us describe the procedure for constructing the maximum feasible set. If the selected values
of ®** = &,(&) are not the maximum ones, then one is not sure whether the values of ®,(c)
from the interval &,(a) < &,(a) < @3* are feasible or not. In this case one has to construct
the feasible solution set D under the constraints ®* = ®,(a@) and the corresponding Pareto
optimal set P. Further, the set D is constructed under the constraints <i>;'j*, v=1,...,k, as
well as the corresponding Pareto optimal set P. Let us compare ®(P) and &(P). If the vectors
belonging to ®(P) do not substantially improve the value of the vectors from ®(P), then one
may set ®7* = @,(a@). Otherwise, if the improvement is significant, then the values of the criteria
constraints may be set equal to 5;*. In this case one has to make sure that the optimal solutions
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thus obtained are feasible. If the designer is unable to do this, then the criteria constraints are
set equal to their previous values,

B = 8, (a).

This scheme can be used for all possible values of ®,(a) and &**.

The PSI method has proved to be a very convenient and effective tool for the designer, primarily
because this method can be directly used for the statement and solution of the problem in an
interactive mode.

The problems of approximating the feasible solution set and Pareto optimal set are considered
in [5].

4.1. Example of Test Tables

Test tables with four criteria after 32 trials (N = 32) are presented in Figure 2. The test
tables are obtained using MOVI software (see Section 5). Recall that for each criterion there is
a corresponding test table (column). The table contains 24 vectors (N1 = 24); the remaining
eight were not included in the test table, since they did not satisfy the functional constraints.
All solutions are arranged in the tables in the order of deteriorating values of the performance
criteria. For example, for the first criterion, vector 8, with a criterion value of 33.6893, is the
best. Next in the order of deteriorating value of the first criterion are vectors 16,24,12,....
The worst is vector 7, with a value of this criterion equal to 44.2836. The minimum (33.6893)
and maximum (44.2836) criterion values among the solutions entering the test table are shown
above the table. The remaining three tables are constructed in a similar manner. For the second
criterion, vectors 12 and 25 are the best and vector 22 is the worst; in the third criterion, vector 7
is the best and vector 8 is the worst. It can be seen from the table that the first and third criteria
are contradictory: the best solutions in the first criterion are the worst in the third criterion and
vice versa. Criteria constraints ®1*, ®3*, ®3*, d3* are highlighted by dark lines; they correspond
to vectors 7, 22, 8, and 10. Since the worst values of the criteria are taken as the constraints, the
number of feasible solutions ND = 24,
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o = s x
MD 24 G Q 0 & B w P
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Figure 2. Example of tesi tables.
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4.2, Dialogue of the Designer with the Computer

As it was already been mentioned, the dialogue of the designer with the computer is central to
constructing the feasible set after carrying out N trials. We present four dialogues as examples.
Criteria constraints ®71*, ®3*, ®3*, ®;* are shown as dark lines in Figure 3.
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(c) Dialogue 3, ND = 1. (d) Dialogue 4, ND == 2.

Figure 3. Examples of dialogues with the computer.

D1ALOGUE 1. See Figure 3a. Criterion constraint $}* = 37.756 is imposed on the first criterion.
As a result, out of the 24 vectors entering the test table, 10 solutions satisfy this constraint (first
column). After imposing the criterion constraint ®3* = 31.084, there are six feasible solutions
{second column). After the criterion constraint ®3§* = 3.2745, there are four feasible solutions
(third column). After the criterion constraint ®3* = 1032.5, the feasible set is empty, ND = ¢
(fourth column). As it can be seen from Figure 3a, the criteria constraints in the first dialogue
correspond to vectors 22, 24, 21, and 5. Since the feasible set is empty, one should either increase
the number of trials N and/or revise the criteria constraints. Examples of dialogues where the
criteria constraints were revised are given below.

DIALOGUE 2. See Figure 3b. The first three criteria constraints are the same as before, while a
minor concession has been made in the fourth criterion: instead of ®}* = 1032.5, we have taken
$;* = 1035, which corresponds to vector 2. As a result, the feasible set contains one solution,
vector 2, so ND = 1.

DiaLoGUE 3. See Figure 3c. The first, second, and fourth criteria constraints are the same as in
Dialogue 1. A concession has been made in the third criterion from ®%* = 3.2745 to $3* = 4.6054,
which corresponds to vector 28. The feasible set remains unchanged, and ND = 1.
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DIALOGUE 4. See Figure 3d. Compared to Dialogue 1, concessions have been made in the first
and third criteria to the values ®1* = 39.523 and ®%* = 4.6054. Two vectors have entered the
feasible set, 14 and 28, and we have ND = 2.

5. IMPLEMENTATION OF THE PSI METHOD
IN MOVI (MULTICRITERIA OPTIMIZATION
AND VECTOR IDENTIFICATION)

MOVI, a comprehensive software system for multicriteria analysis, does not impose any limita-
tions on the number of design variables and criteria; this number is bounded only by the technical
characteristics of the computer. For many engineering optimization problems, the difficulty in
determining the feasible set requires one to carry out a large-scale numerical experiment. MOVI
allows these problems to be solved in parallel mode as described in Section 7. The flexible soft-
ware architecture of MOVI allows optimization of mathematical models developed in Mathworks
Matlab/Simulink, C/C++, and Borland Delphi.

5.1. Analysis Tools

The analysis tools provided in MOVI allow one to determine the functionality of the mathe-
matical model and constraints, as well as provide hints for correcting the initial statement of the
problem. Analysis tools include the following.

Tables of feasible and Pareto optimal solutions

After conducting the trails, MOVI provides the designer with information on the obtained
results, that is, the values of the feasible and Pareto optimal criteria and design variable vectors.
Analysis of these tables allows one to choose the most preferable solution to formulate new
bounds for the design variables and investigate the new parallelepiped with the aim of improving
previously found optimal solutions.

Histograms of feasible solutions

Visualization of the distribution of feasible solutions over the design variable intervals [}, o],
j=1,...,r is of great importance. In particular, the histograms show the role of the functional
and criteria constraints in the design variable space and allow the designer to correct the initial

design variable constraints accordingly.

Graphs criterion vs. design variable I1

After N trials, N1 design variable vectors have entered the test table. We consider projections
of the points &, (af),v=1,...,k,i=1,..., N1, onto the plane ®,c;, 5 = 1,...,7. These graphs
provide information on dependencies between criteria and design variables.

Graphs criterion vs. criterion

After N trials, N1 design variable vectors have entered the test table. We consider projections
of the points ®,(c*), v = 1,...,4,...,4,...,k, @ = 1,...,N1, onto the plane ®;®;. These
projections provide the designer with information about dependencies between criteria.

Graphs criterion vs. design variable I

After the analysis of the test table, preference was given to Pareto optimal vector of. We
fix all components of this vector except for one, a?, and find out how the changes of criteria
®4,...,P; depend on a§ in the initial interval [a;‘; a;*]. This analysis is used for investigating
Pareto optimal solutions.
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Pseudocriteria and tables of the functional failures

The functional constraints are very often not specified rigidly; i.e., they may be revised in
the process of solving the problem. However, it is very difficult to determine them correctly.
As a result, we often obtain a “sparse” or even empty feasible solution set. Two means of
determining soft functional criteria are considered in the PSI method. The first is to represent
functional dependences fi(a) in test tables in the form of pseudocriteria. Analysis of the test
tables allows one to determine the constraints on the pseudocriteria with consideration of all
criteria constraints. The second is correction of the initial values C}, C}* using so-called tables
of functional failures. Only those solutions that do not satisfy the functional constraints enter
these tables. The purpose of the analysis of the tables of functional failures is to determine how
the functional constraints “work” and to correct them if necessary.

The analysis of all tables, histograms, and graphs is an important process of correcting the
initial statement of the problem, since when assigning a priori constraints, especially when there
are many of them, the designer seldom knows how they will behave.

In Sections 6-8, we will show multicriteria analysis tools in action for solving the main classes
of engineering optimization problems.

5.2 Various Generators for Systematic Search in the Design Variable Space

1 [14], ver and Sun have called attention to the possibility of using random number gen-
erators (rng) in the PSI method (along with LP, sequences). We also mention here works by
Halton [15], Hammersley [16], Hlawka [17], Faure (18], and Kuipers and Niederreiter [19,20],
in which good uniformly distributed sequences (in the sense of the uniformity estimates) have
been constructed. Furthermore, Statnikov and Matusov have noted that various pseudorandom
sequences (nets) may be used in the PSI method [2-4,21].

Prior to solving a concrete problem, one cannot say with certainty which of the generators
is most suitable. Much depends on the behavior of the criteria, the form of the functional and
design variable constraints, the number of test trials, and the geometry of the feasible solution set.
The foregoing primarily applies to problems where, for objective reasons, a small (insufficient)
number of trials is conducted. Carrying out a small number of trials is characteristic of the
investigation of real-life problems, for example, in problems with a high dimensionality of the
design variable vector. We also consider problems that require a great deal of computer time to
calculate one criteria vector. The investigation of finite element models can also be assigned to
these operations. For these problems, various test trial generators—random number generator
(rng) and other pseudorandom sequences—can be used in the PSI method.

The use of rng has turned out to be suitable for investigating multicriteria problems depending
on many tens, hundreds, or thousands of design variables [21].

In addition to LP, sequences and rng, the MOVI allows the use of other generators. The
possibility of using various generators in the PSI method for probing the design variable space
makes the method even more versatile.

6. MULTICRITERIA DESIGN: CONSTRUCTION
AND ANALYSIS OF THE FEASIBLE SETS

6.1. Two-Mass Dynamical System

In this example, we determine the feasible solution set of the two-mass dynamical system
shown in Figure 4. The system consists of two bodies with masses M; and Ms. The mass M; is
attached to a fixed base by a spring with stiffness coefficient X1. A spring-and-dashpot element
with stiffness coefficient K5 and damping coefficient C is located between masses My and M.
The harmonic force P - cos(wt) acts upon mass M;. The amplitude and frequency of the exciting
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Figure 4. A two-mass dynamical system.

force are identified as P = 2000(N) and w = 30(s~!). The motion of this system is governed by
the equations

M1X1/ + C(X{ - Xé) + K1 X5+ K, (X1 - Xz) =P COS(wt),

% / / (11)
M2X2 + C (X2 - Xl) +K2(X2 - Xl) = 0

We treat the parameters K1, Ky, M1, Ma, and C as the design variables to be determined, i.e.,
a1 = K, az = Ky, ag = My, ag = Ma, ag = C. The design variable constraints are prescribed
as the parallelepiped II defined by the inequalities

N
11108 < 0y <2.0-10° (B) ;

‘N
4.0-10* < ay < 5.0-10* (5) :
950 < a3 < 1050 (kg); (12)
30 < ag <70 (kg);
80 < a5 < 120 (N—3> .
m
There are three functional constraints (on the total mass and on the partial frequencies)
fi(e) = az + aq < 1100.0 (kg);
= [ -1y .
33.0 < fola) =p1 = p” <420 (s7h); (13)
oo g fag . oo o i1y
2 .U§]3\a)=p2=\/———_\_64.0 77
4

The upper limits imposed on the functions fy(c) and fa() are not rigid. For this reason, the
functional relations fo(«) and fz(a) are interpreted as pseudocriteria ®; and ®;. Thus, we have

three functional constraints
fi(e) = az + a4 < 1100.0,

33 < fa(a), (14)
27 < f3(a).

We want to optimize the system with respect to the following four performance criteria

®3 = X5 (mm)—vibration amplitude of the first mass;

&4 = My + M (kg)—metal consumption of the system;

X1, W .
= );w and &g = =~ dimensionless dynamical characteristics of the system,
18t pl

s

where X« is the static displacement of mass M under the action of the force P. Thus, we have
a vector of criteria & = (1, &3, B3, B4, 5, B6), which will be used for construction of the test
tables. All criteria and pseudocriteria need to be minimized.
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6.2. Experiments

EXPERIMENT 1. Is THE STATEMENT OF THE PROBLEM CORRECT?We performed 1024 trials?
using LP; sequences and constructed the test table. A total of 789 solutions was included in
the test table, since they satisfied the functional constraints. The remaining 235 solutions did
not satisfy the functional constraints (14) and entered the tables of functional failures. While
analyzing the test table, the following criteria constraints were formulated:

&7 = 35.2008;
o3 = 36.9807;

D% = 8.4166;
o (15)
®3* =1019.1211;
P2+ = 18.795;
d2* = 0.9087.

Only eight solutions were found to be feasible (i.e., satisfied constraints (15)). Four of these
feasibie solutions are Pareto optimal {(corresponding to trials #520, #3306, #672, #288).

The analysis of the histograms shows the effect of design variable, functional and criteria
constraints (see Figure 5). In particular, all feasible solutions for design variables a; and a3 are
located in the left ends of the intervals. The feasible solutions for the design variable a4 are
located in the middle of the interval. On the other hand, the feasible solutions for as and as
are more or less uniformly distributed along the interval. These histograms were produced in the
MOVI software system using the option histograms of feasible solutions. The results of analyzing
the histograms for design variables o, a3, and a4 are summarized in Table 1. The first column
of Table 1 lists the initial intervals of variation of a;, a3, and a4. The second column contains
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Figure 5. Histograms of the distribution of feasible solutions.

31n this paper, we use equivalent words for describing designs: solutions, or vectors, or trials.
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Table 1. Refining initial design variables constraints.

Initial Intervals of Variation
of Design Variables
(Expertment 1)

Subintervals Where
the Feasible Solutions Belong
(Ezperiment 1)

New Intervals of Variation
of Design Variables
{Ezperiment 2)

1.1-10% < @1 < 2.0- 108
950 < a3 < 1050
30 <y <70

1.1-10% <o € 1.17- 108
950 < g < 975
42 < 04 €60.35

9.10% < a3 < 1.2-108
850 < az < 980
40 < aq < 64

Kl Table of Criteria

Critevior: |Feasble set »| ™ Showpseudociteiia | = (B 0

Tests pedfomed 1024

Feasble set contans 8

Parsto-optimal set contans 4

Vector 3-X1d 4 memiom2 |5 X1dx1at [6-wipt
2.93217653307383€+00 1.00277343750000E+03 1.63589110119441E+00 8 60342400146053€-01

Max 7.47834026995537E+00 1.01779296875000E +03 4.2T446268846814E+00 BEMBLISINIEM

288 293217653307383€+00  1.00380468750000E +03  1.63569110119441E+00 B 8047255901 734% -0

3% 369972189596129E+00 1.00277343750000E+03 210313292542876E+00 B 6835804632403%€ 01

520 3 93462597292253E+00  1.00873046875000E+03 2 27843472427534E+00  B.60342400146053E-01

544 5.91774890807002E+00 1.01773236875000E+03 129897164469344E+00 0671354151431 2601

560 7.47894026395537E+00 1.01216796875000E +03 4.27446266846814E+00 B 71390461171565€-01

672 299734527150947E+00 1.01630853375000E+03 1.67620034700186E+00 B.77062936320710€-01

8% 309703302724384E+00  1.01611320125000€+03 1.71289517088178E+00 6.82738141605030E-01

968 5.29991285962000E+00 1.01595703125000€+03 309894807039363E+00 B 61668042374744E-01

Figure 6. Feasible solutions (criteria vectors).
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(a) Criterion 1 vs. design variable 1.
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(c) Criterion 3 vs. design variable 1.

(d) Criterion 6 vs. design variable 1.

Figure 7. The dependencies of criteria on the first design variable. The regions of
the feasible and Pareto optimal solutions are circled.
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the corresponding subintervals where the feasible solutions belong. In order to improve the
obtained feasible solutions, the designer decided to redo the investigation with the modified
initial intervals of variation of design variables ;, 3, and a4 (as shown in the last column in
Table 1) and to keep the initial intervals for oz and as (ie., as in (12)). This defines a new
parallelepiped II;, which was used for Experiment 2.

As we also have mentioned, in addition to histograms the designer obtains information in the
form of tables containing values of feasible and Pareto optimal vectors of criteria and design
variables. Eight feasible solutions are given in Figure 6, four Pareto optimal solutions of which
were shown above. Since pseudocriteria are not taken into consideration when constructing
Pareto optimal solutions, only the criteria values are presented in Figure 6. Based on an analysis
of the Pareto optimal solutions, the designer chooses the most preferable solution.

It is also important to analyze the influence of design variables on criteria. For example,
Figure 7 shows the dependencies of criteria &;, ®2, ®3, and ®¢ on design variable a;. We
can conclude from Figure 7 that criteria &, and ®¢ are antagonistic with respect to ;. This
means that further improvement of criterion ®, is possible by decreasing the value of af, which
results in a deterioration of the value of ®. The criterion ®3 is also dependent on a;, while the
dependency of &, on a; is not obvious. These figures were produced in MOVI using the option
graphs criterion vs. design variable II.

In order to make decisions about the most preferable solution in Pareto set, it is necessary to
snalyze the dependencies between criteria that are shownin Figure 8. We can see the antagonism
of the first and sixth criteria and the rather complex relationships between the remaining criteria.
These figures were produced in MOVI using the option graphs criterion vs. criterion.

ot
[

L e o - ——— T |

(a) Criterion 1 vs. criterion 6. « (b) Criterion 3 vs, criterion 1.

‘¢ -
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(c) Criterion 1 vs. criterion 2. (d) Criterion 2 vs. criterion 3.

Figure 8. The dependencies between criteria. The regions of the feasible and Pareto
optimal sclutions are circled.
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(c) Criterion 1 vs. design variable 3. (d) Criterion 6 vs. design variable 3.

Figure 9. The dependency of a criterion on design variables for Pareto optimal
solution #288. The regions of the feasible and Pareto optimal solutions are circled.

Suppose that after analyzing the Pareto optimal solutions, the designer gives preference to
criterion vector #288. Figure 9 shows the dependencies of criteria on design variables for vec-
tor #288 (when one design variable is changing while all the remaining design variables are fixed
to Pareto optimal). We can see that criteria ®; and ®3 are antagonistic with respect to «;.
Similarly, criteria ®; and ®g are antagonistic with respect to ag. These figures were produced in
MOVT using the option graphs eriterion vs. design variable I.

EXPERIMENT 2. IMPROVING THE FEASIBLE SOLUTION SET BY CHANGING THE INITIAL INTER-
VALS OF VARIATION OF THE DESIGN VARIABLES. In this experiment we are seeking to improve
the feasible solution set obtained in Ezperiment 1 by using a new parallelepiped II;. Functional
and criteria constraints were the same in both experiments. After 1024 tests using LP, sequences,
the number of feasible solutions is 258 (compared to eight in Experiment 1), and the number of
Pareto optimal solutions is 25 (compared to four in the previous experiment). Next, we com-
bined feasible solution sets from both experiments and determined Pareto optimal solutions on
the combined feasible solution set. The combined Pareto optimal set contains only 25 solutions,
and all of them were obtained in Experiment 2. Thus, all solutions from Ezperiment I were
improved. ‘

EXPERIMENT 3. IMPROVING THE FEASIBLE SOLUTION SET BY CORRECTING FUNCTIONAL
CONSTRAINTS. As it has already been mentioned, owing to the difficulty of determining func-
tional constraints, the feasible set is often determined incorrectly in applied optimization problems
and the search for optimal solutions often loses any practical meaning.

In Ezperiment 2 after 1024 trails, 419 did not satisfy the functional constraints: 333 solutions
in the second and 86 solutions in the third. All solutions satisfied the first constraint. See
Figure 10. Figure 10 is a table of functional failures in the third functional constraint. As
indicated in Figure 10 the relation f3(o*) < 27-holds for all 86 vectors. Only 9 of the 86 vectors
are shown. o
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M1 Table of Functional Failures
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Name: [13(p2)

]| Constsio |27

Tests periormed
Total number of lunctional laksees

1024

419

Number of functional lalres with iespacd to 11 (m1+m2) 0
Numbes of hunctional [alres with respect to 12 [p2) 333
Niwnhue ol hrvebinnal ak eae usth iaenact tn i3 021 [

Vector number Value

7

@

“ W e

T R R

26. 9571907195755
26.9281368235303
26.9163343401805
26.91465250439

— | @
1

26.9144262316885

26.837637756486
26,8541 224202445
26.8571551368361
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Figure 10. Table of functional failures.

It follows from Figure 10 that if in place of the given constraint equal to 27, we had made a
small concession to a value of 26.85, these nine vectors would not only have satisfied the relaxed
constraint, but would also have entered the test table, since this constraint is the last. (Note that
the constraints are verified consecutively.) Figure 10 was produced in MOVI using the option
tables of functional failures.

An analysis of the tables of functional failures allowed the designer in Ezperiment 3 to make
relatively small concessions from the initial values 33 < fa(a) and 27 < f3(a) to 32.5 < fa(a)
and 26.5 < fi(a). As compared with Ezperiment 2 another 24 vectors entered the test table.
Thus, with a relatively small relaxation of the initial functional constraints in Ezperiment 2,
the number of feasible solutions in Fzperiment 3 increased from 258 to 282, and Pareto optimal
solutions from 25 to 26. Note that in Exzperiment 3, there is no need to carry out additional
trials. The 24 vectors that were found were obtained solely by relaxing the indicated functional
constraints.

To summarize, an analysis of the results obtained in Experiment 1 showed the advisability of
correcting the design variable constraints. As aresult, in Ezperiment 2, the number of feasible and
Pareto optimal solutions were significantly increased from 8 and 4 to 258 and 25, respectively.
None of the solutions found in Ezperiment 1 entered the combined Pareto set; i.e., all these
solutions were improved. Ezperiment 3 showed that it was possible to increase the number of
feasible and Pareto optimal solutions by correcting the functional constraints. These numbers in
comparison with Erperiment 2 increased to 282 and 26, respectively.

REMARKS.

¢ One measure of improving the statement of a problem is an increase in the efficiency
coefficient . The quantity v may be defined as the ratio of the number of feasible solution
to the number of trials. Thus, in Exzperiment 1, v = 8/1024 = 0.0078. In Ezperiment 2,
it increased to 7y = 258/1024 = 0.252, and in Ezperiment 3, the:coefficient increased even
more to y = 282/1024 = 0.2754.

o Comment on the designer’s behavior. The designer makes a decision about modifying the
initial statement of the problem after analyzing the obtained results, i.e., how much the
main performance criteria have been improved.

7. ANALYZING COMPUTATIONALLY EXPENSIVE PROBLEMS

For many applied optimization problems, it is necessary to carry out a large-scale numerical
experiment in order to construct the feasible set. For this reason, a search for optimal solutions
is often not carried out at all. We will mention a few types of difficult problems.
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The first type: problems with stringent constraints, as a result of which we obtain small values
of v, for example, v <« 0.001. (Recall that v is the ratio of the number of feasible solutions to the
number of trials.) In this case, even if the time for calculating one criteria vector is fairly short,
it takes a long time to find at least one feasible solution because of the need to carry out a large
number of trials. These problems are said to be like “looking for a needle in a haystack”.

The second type: problems with a high dimensionality of the design variable vectors (e.g., thou-
sands of design variables). It is obvious that these problems also require a large-scale numerical
experiment with hundreds of thousands or millions of trials.

The third type: problems with complex mathematical models, where calculating one criteria
vector requires a lot of computer time, i.e., from ten or more minutes to many hours. For example,
this includes many problems with finite element models.

Below we consider two approaches to solving these problems.

7.1. Parameter Space Investigation in Parallel Mode

The software package MOVI allows one to tackle computationally expensive problems in parallel
mode, so that the desired number of trials N is distributed among & computers [21]. Thus, each
computer finds a feasible solution set for its own subproblem (by conducting ~ N/k trials). Next,
all feasible solution sets are combined and a single Pareto optimal solution set is constructed.

ExaMPLE 1. Consider a system with 1000 design variables. The design variable vector is given
by @ = (a1,...,21000), 1 € a; <2,i=1,...,1000. We are seeking to minimize simultaneously
the following performance criteria ®,(a):

1000
¢, = E o,
1

1000 299

2 2
2 af=3 ot

300 1

1400
@3 = Wo—; -~ COS (Z ai) y

POR%
300

700 /71000 \ B
; .
@:z_f_(sm(zag)) .
1

1 701

0,

i

(16)

While analyzing the test tables, we formulated the following criteria constraints:

&, < 1502.2254,
®, < 930.4528,
&3 < 0.1624,

&, < 10.3851.

(17)

We investigated the parameter (design variable) space and criteria space using four computers
simultaneously. Each computer conducted 50,000 trials using a random number generator. The
four computers conducted a total of 200,000 trials, which resulted in 4297 feasible solutions,
v = 4297/200000 =~ 0.02. The CPU time was approximately eight hours per computer using
Intel Xeon 2.4 GHz, 2 GB RAM workstations.

After we combined all 4297 feasible solutions, we obtained 326 Pareto optimal ones. The
efficiency coefficients for the Pareto optimal and feasible solutions are equal to 7, = 0.0016 and
5 = 0.021, respectively.
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ExaMPLE 2. The following performance criteria need to be minimized:
50
o =) a,
1
50 20
®2 = Z Ot? - Z a?,
21 1

(18)
1400
©3 = 50 )
Ya
21
2% 50 3
Be=S % 2)
3% (yet)
15 26
We have 50 design variables with the following intervals of variation: 1 < a; <2,¢=1,...,50.

We are also given a priori criteria constraints

dH** — 60,804

** — 60.804 ,
®2* = 20.384,
$3* = 23.570,

&% = —120, 600.

A total of 250,000 trials was conducted on five computers (50,000 trials each) using a random
number generator. The combined feasible solution set was constructed, and the combined Pareto
optimal set was constructed on it.

Table 2. Pareto optimal solutions obtained on five computers.

Feasible and Pareto The Contribution of Each
Number of a Computer Optimal Solutions Computer to the Combined
Pareto Optimal Solution Set

1 23 (20) 14
2 14 (11)
3 13 (10)
4 19 (19) 14
5 18 (13) 12

The results of the investigation are presented in Table 2. The combined feasible set contains 87
solutions, and the combined Pareto optimal set contains 57 solutions. For example, data from
the first computer are given in the first row: 23 feasible solutions, 20 of which are Pareto optimal
solutions; the first computer contributes 14 vectors to the combined Pareto optimal solution
set. The contribution of each computer to the combined Pareto optimal solution set is shown
in the last column. The coefficients for the Pareto optimal and feasible solutions are equal to
Yp = 0.000228 and vy = 0.000348, respectively.

The dependencies between criteria obtained on the first computer after carrying out 50,000
trials are shown in Figure 11. This analysis shows the complex relationships between the criteria
and the localization of the feasible solutions.
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Figure 11. Dependencies between criteria. The regions of the feasible and Pareto
optimal solutions are circled.

7.2. Approximating a True Mathematical Model

In Section 2, we defined the solutions satisfying all constraints as feasible solutions. In cal-
culating them, we turned to a mathematical model that we assume to be true. If we replace
the true model with an approximate one, we consider the solutions obtained using this model to
be approzimate feasible and approzimate Pareto optimal solutions. The essence of the approach
under consideration is as follows:

e A large number of trials is conducted using the true model in the PSI method. The
solutions ®(a*) that entered the test tables are determined.

e An approximate mathematical model is constructed using machine learning algorithms
(e-g., [22]), and the approximate feasible solutions ®7(a’») (satisfying all constraints) are
determined by means of the PSI method.

e The obtained approximate feasible solution set is checked for feasibility. To do this, we
turn to the true model and calculate the vectors $(ai») for each o>
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The effectiveness of using an approximate model may be judged by the following:

(1) time required to obtain one feasible solution using an approximate and a true model (an
approximate model may work much faster than the true model);
(2) the number of references to the true model to check the feasibility of approximate feasible
solutions (calculation of the values ®(a'#));
) statistical estimates of the quality of the approximate model and the obtained solutions.

(3
In Section 8.4, we give an example of obtaining solutions using an approximate model.

8. OTHER CLASSES OF PROBLEMS AND THEIR SOLUTIONS

Solution of the problems described below is based on the multicriteria design method discussed
in Section 6.

8.1. Multicriteria Optimal Design of Controlled Engineering Systems

The operating efficiency of the majority of complex engineering systems (automobiles, air-
planes, or their engines) strongly depends on the perfection of the system design and the quality
of control in specific operating conditions.

The traditional approach to creating controlled engineering systems involves the solution of
two optimization problems: the optimal design problem and the optimal control problem. These
problems are solved successively and independently of each other. As a rule, the requirements
for the efficiency of the automatic control system are not taken into account at the design stage.
This philosophy is reflected even in the structure of organizations involved in the development
of complex engineering systems; in such organizations, design and control problems are solved in
different departments.

In this context, the designer determining optimal control laws has to deal with rigidly fixed
structural variables (design variables) of the object, which substantially reduces the possibilities
of improving the object’s operating efficiency. In fact, the results of the optimal design serve as
input data for solving optimal control problems and therefore play a determining role for both
the control itself and the efficiency of the entire system.

Thus, it is reasonable to combine the optimal design problem with the optimal control problem
to form a single problem of optimal design of controlled systems. The proposed solution of this
problem would involve simultaneous optimization of design variables and control laws.

Consider an engineering system whose efficiency can be evaluated by a number of particular
performance criteria ®,, v = 1,...,k. It is important that the set of criteria ®, comprise
both ‘pure design’ criteria ®4,, v = 1,...,k; and control criteria ®.,, v = k; + 1,...,k. The
design criteria can be the mass of the system, the stiffness of the structure, stability margins, the
efficiency of the system operation in various operating modes, and so on. Some of the control
criteria may coincide with design criteria (e.g., the efficiency of the system operation), while the
other control criteria may evaluate specific control characteristics, such as the transition time
between operating modes, control stability, energy consumption for control, etc.

The efficiency of this engineering system is determined by a set of design variables (structural

parameters) oy = (aq1,...,0q4p) and a set of control laws u = (uy,...,u;), where p is the
number of design variables and z is the number of controlled elements. In general, control laws
are functions of time and the variables w;, i« = 1,...,¢ characterizing the operating mode of

the system, so that w = f(t,w). The number of ‘mode variables’ w; and their physical sense
are specific for each engineering system. For example, the mode variables of a gas turbine
aircraft engine are the position of the engine control lever; reduced rotation rates n, of the
rotors; pressure, temperature, and humidity of the atmospheric air; and the Mach number. We
represent the control vector by a set of control variables o = (1, - - -, ®em). For example, these
variables can be the coefficients of the function v = f(¢,w). We emphasize that any particular
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performance criterion of an engineering system can be represented as a function of the design
variable vector oy and the control variable vector ag, so that ®, = ®,(aq, ac)-

The traditional approach to optimizing controlled engineering systems results in the deter-
mination of a single design variable vector ay (the design of the system) and a corresponding
single control variable vector a. (the set of control laws). This approach does not always make
it possible to investigate all potentials for increasing the efficiency of a control system.

A more efficient approach to the multicriteria optimization of controlied engineering systems
employs, for a single design variable vector, not a single control variable vector, but a set of
vectors, each of which determines the optimal set of control laws for each purpose (operating
mode). All the control variable vectors are stored in a computer memory and may be chosen in
accordance with a specific control purpose, thus implementing the optimal control. When using
this approach, one has, first of all, to construct a set D of feasible solutions o = (@g, ¢;) € D,
i =1,...,Pa, Where p, are sets of control laws (specified by the control variable vectors c;)
that correspond to each design (specified by the design variable vector ag). Then it is necessary
to determine a set P C D of Pareto optimal designs and to select from this set a design a® =
(%,a%) € P,i=1,...,pao that is most preferable from the viewpoint of the designer.

In typical multidimensional problems, the number of design variables and control variables
may reach many dozens, and thus it is extremely difficult to construct the feasible set D. For
this reason, we suggest solving practical problems in stages as follows.

STAGE 1. Determine the feasible set D consisting of the design and control variable vectors,
a = (ag,a.). As a result of this stage, only one set of control laws (represented by the control
variable vector ) corresponds to each feasible design oy.

STAGE 2. To estimate the limiting performance of the system, one must solve the multicriteria
problem of optimizing the control variables with respect to the control criteria ®cv, v = k1 +
1,...,k for all feasible designs. In other words, for each fixed ¢y from the set D, by varying
only control variables a,, we construct the vectors (cg, ) € D in which to any a4 there
correspond p,, Pareto optimal control laws. To complete this stage, we determine the set PchD
of Pareto optimal solutions.

STAGE 3. Based on the analysis of the set P, select the most preferable solution o = (g, a;),
1=1,...,pq0.

If the number of control or/and design variables is large, construction of the set D requires
a rather extensive numerical experiment. Conducting such an experiment is sometimes either
difficult or even impossible. In this case, in Stage 1, we select from the set P C D of Pareto
optimal solutions a subset of most acceptable vectors of = (a,ad). Then for each of the
selectéd o) we solve the multicriteria control problem in accordance with Stage 2.

The effectiveness of this approach was demonstrated in the search for optimal design variables
and control laws for a multistage axial flow compressor of a gas turbine aircraft engine and for a
robot [3].

The above strategy also allows one to reach the maximum capabilities of efficiency of complex
engineering systems by the choice of most preferable design from the obtained set and by imple-
mentation (for example, on an airborne computer) of different control laws optimal for different
purposes and operating modes of the engineering system.

8.2. Multicriteria Identification

One of the fundamental problems in engineering optimization is determination of the adequacy
of the mathematical model for the actual object. Without estimatihg the model’s adequacy, the
search for optimal design variables has no applied sense. But what is the measure of adequacy?
To what extent can we trust one model or other? In other words, we must ensure that our model
is adequate to the system under study [1-4].
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We denote by ®Z(c), v =1,...,k, the criteria resulting from the analysis of the mathematical
model that describes a physical system, where o = (a, ..., ;) is the vector of the parameters
of the model. The criteria ®¢(c) can be functionals of integral curves of differential equations or
functions of the vector a that are not associated with solutions of differential equations.

Let ®* be the experimental value of the v*! criterion measured directly on the prototype.
Suppose there is a mathematical model or a hierarchical set of models describing the system’s
behavior. Let ® = ([|®f - ®7®||,...,||®f — ®TP|), where || -|| is a particular adequacy (closeness,
proximity) criterion. As it has already been mentioned, this criterion is a function of the difference
(error) @5 —®S*P, Tt is often given by (&S — $*P)? or | S — O*P|. If the experimental values PSP,
v =1,k are measured with considerable error, then the quantity ®*P can be treated as a random
variable. If this random variable is normally distributed, the corresponding adequacy criterion
is expressed by M{||®5 — ®¢*P||}, where M{| - ||} denotes the mathematical expectation of the
random variable | - ||. For other distribution functions, more complicated methods of estimation
are used, for example, the maximum likelihood method.

We formulate the following problem by comparing the experimental and calculated data to
determine to what extent the model corresponds to the physical system and find the model
variables. In other words, it is necessary to find the vectors o’ satisfying conditions (1) and (2)
and, in addition, the inequalities

|25 (o) — 25 < &3 (19)

Conditions (1), (2), and (19) define the feasible solution set D,. Here, ®3* are criteria con-
straints that are determined in the dialogue between the designer and a computer. To a consid-
erable extent, these constraints depend on the accuracy of the experiment and the physical sense
of the criteria ®,. Examples of solving identification problems are described in [2-4,8,23].

8.3. Operational Development of Prototypes

The problem of operational development of a prototype and its improvement is one the most
pressing and complex design problems. This problem is encountered in the production of machine
tools, automobiles, ships, and aircrafts, where enormous amounts of money are spent on the
operational development of the object with limited time to solve the problem.

We suggest carrying out the operational development of prototype in two stages. In the first
stage, accelerated tests (for instance, bench tests) are performed. These tests allow us to identify
the mathematical model of the object and to determine its parameters. Thus, the set D, is
found as a result of multicriteria identification. In the second stage, the designer formulates
and solves the multicriteria optimization problem. We construct the parallelepiped II in D,,
determine the vector of performance criteria, and find the feasible solution set D. To do this,
we use the mathematical model whose adequacy was established in the first stage. Based on
the optimization results, improvements to the prototype are made, and then the bench tests and
full-scale test are conducted. This cycle is repeated until the designer decides to terminate the
operational development. '

Let us summarize the characteristic features of these problems:

o The designer has insufficient information about design variable constraints before solving
identification problems.

¢ The presence of strong design variable, functional, and criteria constraints (the object
already exists and we need to update it).

« High dimensionality of criteria vector. For complex systems, the number of particular
proximity criteria used to evaluate the adequacy of the mathematical model can reach
many dozens, e.g., a 65-criteria identification problem of operational development of a
vehicle was solved by application of the PSI method and is described in [2].
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Figure 12. Approaches to solving problems of improving a prototype.

Some ways of solving problems of operational development of prototypes are considered below.

Suppose we have a prototype that needs to be improved. The criteria vector of the prototype
is known, ®? = (®7,...,®%). Figure 12a shows the criteria space of the prototype vector &7,
while Figure 12b shows the design variable space of the initial parallelepiped II.

It is desirable to find the design variable vector af that satisfies the inequalities

[, (of) — @2 < @2,  w=1,...,k

and, on the set of Pareto optimal vectors, determine the most preferred solution ®(a°), surpassing
the prototype in all criteria or at least the most important ones. Let us consider two situations:

1. A solution 7 exists. However since the designer has only a rough idea of the possible
search limits for many of the identified design variables, the identified vector is usually
of ¢ TI. In view of this, the initial parallelepiped II, and in a number of cases, the
mathematical model itself, must be repeatedly corrected.

2. Equally important is the situation where it is impossible to identify the vector a”, for

example, when the designer’s wishes for local criteria ®2, v = 1,...,k are unattainable.
Here, the search process of the prototype is very useful, since it allows one to define the
compromise solution ®(a°) that in a sense is close to 7 = (8%, ...,87), if not in all local

criteria ®F, then at least in the most important ones. Thus, we can answer the question
of how to improve the prototype and by how much.

Suppose a Pareto optimal solution set P(II) is constructed given some initial constraints, but
the designer is not satisfied with the obtained solutions, Figure 12a. Based on an analysis of
the results in II, the statement of the problem is corrected, for example, the design variable
constraints, and a new parallelepiped II; is constructed. Figure 12b shows II;, while Figure 12a
shows the Pareto optimal set P(II;) corresponding to it. Figure 12a also shows Pareto optimal
sets P(II), P(Il;), and P(Il). The region of best approximations to ®? obtained as a result of
investigating II, II;, and II, consists of the curves AB and BC: AB belongs to P(II;) and BC
belongs to P(II;). The solution of similar problems includes correcting all restraints according
to the results of an investigation of the criteria space and design variable space.

EXAMPLE 1. We will consider the problem of improving a prototype using the example of a
dynamic system (11). :

Let us consider investigation in parallelepiped II, see (12). The criteria vector of the prototype
is given

®P = (32.616; 41.231; 20.633; 970; 10.316;0.91978).

Recall that the first two indices &} = 32.616 and ®} = 41.231 are pseudocriteria, and the
remaining four ®%, &}, ®f, BL are criteria. The boundaries of the initial parallelepiped are
defined in (12). A priori criteria constraints are stated (some of them are larger than the values
of the criteria &F), in particular,

O** = (34.616; 42.231; 20.733; 1030; 10.416; 0.92078);
in addition, for the prototype, the requirements f; < 1100, f, > 33, and f3 > 24 must be fulfilled.
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Figure 13. Pareto optimal solutions {criteria vectors) in parallelpiped II.
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Figure 14. Histograms of the distribution of feasible solutions in parallelepiped II.

A total of 1024 trials was conducted in II, and 18 feasible solutions were found, of which eight
were Pareto optimal, see Figure 13. In Figure 13, criterion 1 and criterion 2 are pseudocriteria.
Analysis of the obtained results showed that vectors #£720, #448, and #72 are quite close to the
prototype in the criteria. They are slightly inferior to it in the fourth criterion and surpass it in the
third, fifth, and sixth criteria. As a result of analyzing the boundaries of the design variables, the
designer makes a decision on further investigations by decreasing the lower intervals of variation
of the first and third design variables. The advisability of this can be seen from the histograms
of the distribution of feasible solutions (see Figure 14). Based on this, a new parallelepiped I
is constructed, see Table 3. '

Table 3. Boundaries of the variable parameters in the two experiments.

ay az [o %1 oy ag
I [1.1-10% 2.0 10°] [4.0-10%] [950;1050] | [30;70] | [80;120]
M | [0.9-10%1.2-10% | [3.5.10%5.50-10%] | [900;1010] | [25;65] | [70;130]

Now we perform investigation in parallelepiped II;. A total of 1024 trials was conducted with
the criteria constraints given above. 110 feasible solutions were found, 13 of which were Pareto
optimal, where eight of these (#101, #793, #441, #126, #854, #378, #390, #882) surpassed
the prototype ®” in all four criteria, see Figure 15. Analysis of the feasible values of the design
variables and the histograms showed the possibility of a further search for the best solutions by
correcting the constraints on the first and third design variables.

EXAMPLE 2. THE PROBLEM OF IMPROVING THE PROTOTYPE OF A SHIP. The purpose of
this example is to demonstrate multicriteria analysis in six experiments* (in four parallelepipeds)

4LP- sequences were used in Experiments 1-4 and 6, and a random number generator in Experiment 5. We will
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Figure 15. Pareto optimal solutions (criteria vectors) in parallelepiped IIj.

resulting in an improved prototype, see [23]. We will omit a description of the mathematical model
and briefly illustrate some elements of multicriteria analysis. Among the particular features of the
problem are the high dimensionality of the design variable vector (45 design variables) and the
difficulties of improving a reasonably good prototype under strong constraints (seven functional
constraints and nine pseudocriteria). Six criteria were optimized: ®; is the propulsion power
factor (%) (min); ®, is the electrical power factor (%) (min); ®3 is the volume factor (%) (max);
®4 is the region factor (%) (max); ®5 is the weight factor (%) (max); and ®¢ is the cost (min).

In view of the high dimensionality of the design variable vector, 200,000 tests were conducted
in each of the first five experiments and 500,000 in the sixth experiment. After each of the first
three experiments, the constraints were corrected according to the results of analysis of the test
tables, tables of feasible and Pareto optimal solutions, tables of functional failures, histograms
of feasible solutions, and graphs of dependencies of criterion versus criterion and criterion versus
design variables. Then a new experiment in a new parallelepiped was conducted. The fourth
and sixth experiments were conducted in the fourth parallelepiped. Starting from the specified
values of the prototype, design variable (parallelepiped II; ), functional, and criteria constraints
were formulated, with the functional and criteria constraints being weakened in comparison with
the prototype.

A total of seven feasible solutions (all of them Pareto optimal) was obtained in the first ez-
periment (parallelepiped I1;). No interesting solutions were obtained from the designer’s point
of view. Based on the results of an analysis of the feasible solutions, the ranges of some of the
design variables were corrected and parallelepiped II, was constructed.

The second experiment (parallelepiped ITy) also did not lead to new results. There were nine
feasible and three Pareto optimal solutions, respectively. Based on the results of analysis of the
second experiment, the design variable constraints were corrected and thus parallelepiped Tz
was constructed. The functional constraints and criteria constraints were also corrected. These
changes formed the essence of the third experiment.

Three feasible (they are also Pareto optimal) solutions were found in the third experiment
(parallelepiped IT3): #£17311, #108455, and #71279. These solutions attracted the attention of
the designer. For cxample, design #108455 proved te be better than the prototype in five of the six
criteria. The smaller number of feasible and Pareto optimal solutions in comparison with the first
and second experiments was caused by the considerable strengthened criteria constraints. Based
on the results of an analysis of the third experiment, the search region in the fourth experiment

restrict ourselves to describing the experiment with LP, sequences.
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was limited by the design variable values of the three specified designs. Thus, parallelepiped I14
was constructed.

In the fourth experiment (parallelepiped Il4), the criteria constraints were strengthened in
comparison with the third experiment (the first dialogue of the designer with the computer).
However, the number of the feasible and Pareto optimal solutions turned out to be rather high
(2161 and 281, respectively). This is due to the fact that the search region in parallelepiped I14 was
substantially smaller than in parallelepiped 112 for the same number of tests. Many solutions of
interest to the designer were found. After analyzing the obtained solutions, an attempt was made
to improve the prototype in all criteria simultanecusly. Therefore, in the second dialogue, the
criteria constraints corresponded to the values of the prototype criteria. As a result, 20 Pareto
optimal solutions surpassing the prototype in all criteria were found. Thus, the problem of
improving the prototype has been solved.

Two dialogues were also conducted in the sizth erperiment (parallelepiped II4). In the first
dialogue, the criteria constraints on the second and sixth criteria were strengthened in comparison
with the first dialogue in the fourth experiment. A total of 500,000 trials was conducted, and 627
feasible and 138 Pareto optimal solutions, respectively, were found. Many of them were very
interesting for the designer. In the second dialogue, the criteria constraints corresponded to the
values of the prototype criteria. Eleven Pareto optimal solutions surpassing the prototype in
all six criteria simultaneously were found. In comparison with the second dialogue of the fourth
experiment., we obtained six new solutions. A combined set of Pareto optimal solutions surpassing
the prototype in all six criteria contains 26 solutions, five of which (#16907, #164167, #191033,
#293036, #293036, #364925) are given in Table 4.

Table 4 Experimental results.

Experiments $1% &% &3% &4 % 5% dg
(min) (min) (max) (max) (max) (min)
Prototype 248 | 1000 | 1177 | 1433 | 101 555
Fourth experiment, |, og 810 | 146 18.3 5.68 547
#16907
Fourth experiment, | , o, 303 | 196 23.7 8.46 549
4164167
Fourth experiment, |, 735 | 15.1 18.7 8.16 544
#191033
Sixth experiment, |, 4, 155 | 234 97.4 2.10 543
£293036
Sixth experiment, 2.37 256 | 248 28.8 5.14 547
4364925

REMARK. There were similar constraints in the fourth and fifth experiments. As mentioned
above, a random number generator was employed in the fifth experiment to investigate the
design variable space. A total of 2169 feasible and 184 Pareto optimal solutions was found. The
best solutions in the fourth and fifth experiments turned out to be nearly identical.

Some elements of the performed multicriteria analysis are shown below. Histograms of the
distribution of feasible solutions for the 1% and 37*! design variables in the first four experiments
are shown in Figure 16. It is clear that a good distribution of feasible solutions was obtained
only in the fourth experiment. The dependencies between criteria (third experiment) are shown
in Figure 17. The regions of the three specified designs are circled.

In summary, we will draw attention once again to some features and strategy of problem
solving.

e The dimensionality of the design variable vector was high (equal to 45). Therefore, it was
necessary to carry out a large number of trials. A total of 200,000 trials was conducted in
each of the first five experiments and 500,000 in the sixth.
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Figure 16. Histograms of the distribution of feasible sets for the 15% and 37t design
variables.

o' Multicriteria analysis showed the necessity of repeated correction of the constraints, and
because of this, a series of experiments was performed. Each subsequent experiment was
carried out on the basis of the previous one (step by step). In the first three experiments,
we obtained a small number of feasible solutions; and it was only in the third experiment
that we came close to satisfactory results. An analysis of these results allowed us to define
the region of good solutions where subsequent experiments were carried out.

¢ Improvement of the prototype in all criteria occurred in the second dialogue of the fourth
and sixth experiments.

Owing to the difficulties of correctly stating engineering optimization problems, designers end
up solving ill-posed problems. By this example, we demonstrated how to state and solve similar
problems correctly on the basis of the PSI method.

8.4. Multicriteria Analysis from Observational Data

For this class of problems, there are no 4 priori specified mathematical models. However,
there are available observations in the form of tables that give an indication of the behavior
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Figure 17. Dependencies between criteria in the third experiment. The regions of
the feasible and Pareto solutions are circled.

of the system under investigation. These problems are often encountered in medicine, biology,
economics, materials science, information science, and other fields. An approximate mathemat-
ical model is constructed on the basis of the observations with the use of classification and
regression algorithms. Some algorithms for constructing approximate criteria functions include
regression by neural networks, support vector machine (SVM) regression, and multiple linear
regression [22,24-26]. Below we describe a general strategy for multicriteria analysis from obser-
vational data.

STEP 1. OBTAINING OBSERVATIONAL DATA AND CONSTRUCTING AN APPROXIMATE MODEL.
Suppose we have an experiment with N observations represented by an N x M matrix, where M
is the total number of observed variables (criteria and design variables). The approximate criteria
functions are constructed using machine learning algorithms. The quality of approximate criteria
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functions is evaluated by statistical metrics, such as R? (fraction of variance explained by a model)
and absolute, relative, and squared errors. Then functions with the best evaluation performance
are chosen for the approximate mathematical model.

STEP 2. MULTICRITERIA ANALYSIS: CONSTRUCTION OF THE APPROXIMATE FEASIBLE SOLU-
TION SET AND SEARCH FOR THE BEST SOLUTIONS.

EXAMPLE. Below we show the process of constructing the approximate feasible solution set in
problems in which only observational data are present. This example also illustrates principles
of work with the approximate model described in Section 7.2.

The collection of observational data depends on the specifics of the problem being investigated
and is beyond the scope of the present work. In the present case, in order to obtain observational
data, we referred to a true model (11) and, using the PSI method, conducted 4000 trials with
a random number generator. As a result, we obtained a 4000 x 11 (M = 6 criteria + 5 design
variables) matrix of observations,

Using the observational data, we constructed approximate criteria functions by means of ma-
chine learning algorithms. In our case, criteria 3 and ®5 were determined using generalized
neural networks for regression [24], while the remaining four criteria were reconstructed using the
SVMTorch algorithm [25]. This choice was based on statistical estimates of the criteria functions
obtained; the estimates of the best approximate functions are given in Table 5. These criteria
functions constitute the approximate mathematical model.

Table 5. Statistical estimates of the approximate criteria functions.

Criteria R2? Mean Absolute Mean Relative Mean Squared
Error Error Error

(31 0.999997 0.0361611 3.44387e — 005 0.00313826
(oD 0.999975 0.0121383 0.000329313 0.000357047
$3 0.810006 0.603323 0.119773 2.35193
D4 0.999997 0.0361611 3.44387¢ — 005 0.00313826
33 0.797901 0.368809 0.109251 0.778614
(o1 0.998594 0.0024371 0.00319643 7.67688e — 006

At this stage, we have an approximate model and we will use it with the PSI method. That is,
we employed the PSI method to conduct 1024 trials using LP, sequences. We constructed test
tables and obtained eight approximate feasible solutions ®(a'») that satisfied constraints (12),
(14), and (15). These were vectors #288, #336, #520, #544, #560, #672, #896, and #1008.

Since in this example we had access to a true model, the vectors a’» were checked for feasibility
by direct application of the true model and calculation of the values ®(a’r). Seven of the eight
approximate feasible solutions indicated above were found to be feasible.®> The eighth approximate
feasible solution #1008 was nonfeasible because of errors in the approximate model.

After constructing and analyzing the approximate feasible solution set, we corrected design
variable constraints and determined a new approximate feasible set. This procedure was similar
to the one described in Section 6.2. After 1024 trials with LP; sequences, 311 approximate feasible
solutions were identified, 218 of which turned out to be feasible. We note that in Ezperiment 2
with the true model, there were 258 feasible solutions.

In order to analyze the efficiency of the employed approximate model, we can use a metric
equal to the number of feasible solutions found with the approximate model over the number
of feasible solutions obtained with the true model. In the cases described above, this metric
is 7/8 = 0.875 and 218/258 = 0.85, respectively. Further improvement of the efficiency of an
approximate model is possible by improving the fit of the true criteria functions, especially for ®3
and ®s. However, it is worth noting that we have already approximated the true model fairly

5Recall that eight feasible solutions were found from the true model, see Ezperiment 1 in Section 6.2.
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Figure 18. The dependencies of criteria on the first design variable for the approxi-
mate mathematical model. See Figure 7 for the true model.
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Figure 19. The dependencies between criteria for the approximate mathematical
model. See Figure 8 for the true model.
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well, such that we have preserved the dependencies of criteria on design variables and between
criteria, see Figures 18 and 19.

To summarize, multicriteria analysis can be carried out in problems from observational data
by constructing an approximate model. This analysis can be used to predict the best solutions
and approaches to their subsequent improvement.

9. CONCLUSIONS

One of the main causes of inefficient use of standard optimization methods for solving applied
problems is that it is difficult for the designer to correctly specify the feasible solution set, and
therefore, as a rule, one solves ill-posed problems. The problem of constructing a feasible set
is a fundamental one and is usually not addressed. The PSI method has been created for the
correct definition of the feasible solution set. The MOVI software (implementing the PSI method)
is a comprehensive system that enables methodologically rigorous multicriteria analysis. The
multicriteria analysis tools available in MOVI, such as:

e test tables,

tables of feasible and Pareto optimal solutions,

tables of functional failures,

histograms of feasible solutions,

graphs of dependencies of criteria on design variables and dependencies between criteria
allow us to:

1. correctly construct and analyze the feasible and Pareto optimal solution sets,

2. correct the initial statement of the problem (design variable, functional, and criteria
constraints),

3. make a decision about the most preferable solutions in the Pareto set,

4. conduct large-scale numerical experiments (with hundreds of thousands or millions
of trials),

5. solve many problems that until recently were impossible to optimize.

Using the PSI method as a basis, it is possible to solve multicriteria problems, such as design,
identification, design of controlled systems, operational development of prototypes, analysis of
large-scale systems, and multicriteria analysis from observational data.
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