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all other variables are probabilistically independent of 
T. Thus, knowledge of the values of the Markov 
Blanket variables should render all other variables 
superfluous for classifying T. Technical details about 
the distributional assumptions underlying this 
intuition, existence and uniqueness of MB(T), and 
relations to loss functions and classifier-inducing 
algorithms were only recently explored however, by 
the first two authors of the present paper [8]. From a 
practical perspective, identifying the Markov Blanket 
variables has proven to be a challenging task as 
evidenced by the limitations of prior methods.  
Specifically, the approaches in [1,2] are unsound (i.e., 
provably do not always return the correct MB(T) even 
with infinite sample and time); the method of [10] is 
sound but relies on inducing the full Bayesian 
network and thus does not scale up to the number of 
variables; the work in [11] is unsound and has poor 
average computational efficiency. Notably, two 
newer families of algorithms [8, 12] are sound and 
computationally efficient, but require sample 
exponential to the size of MB(T). In biomedical 
domains sample sizes are typically limited (and often 
sample-to-variable ratios are very small), however. 

ABSTRACT 
We introduce a novel, sound, sample-efficient, and 
highly-scalable algorithm for variable selection for 
classification, regression and prediction called 
HITON. The algorithm works by inducing the 
Markov Blanket of the variable to be classified or 
predicted. A wide variety of biomedical tasks with 
different characteristics were used for an empirical 
evaluation. Namely, (i) bioactivity prediction for 
drug discovery, (ii) clinical diagnosis of arrhythmias, 
(iii) bibliographic text categorization, (iv) lung 
cancer diagnosis from gene expression array data, 
and (v) proteomics-based prostate cancer detection. 
State-of-the-art algorithms for each domain were 
selected for baseline comparison. Results: (1) HITON 
reduces the number of variables in the prediction 
models by three orders of magnitude relative to the 
original variable set while improving or maintaining 
accuracy. (2) HITON outperforms the baseline 
algorithms by selecting more than two orders-of-
magnitude smaller variable sets than the baselines, in 
the selected tasks and datasets.  

INTRODUCTION 
The contribution of the present paper is that it 

introduces HITON1, a sound, sample-efficient, and 
highly scalable algorithm for variable selection for 
classification, based on inducing MB(T). HITON is 
sound provided that (i) the joint data distribution is 
Faithful to a BN, (ii) the training sample is enough 
for performing reliably the statistical tests required by 
the algorithm, and that (iii) one uses powerful enough 
classifiers (i.e., that can learn any classification 
function given enough data). A distribution is faithful 
to a BN if all the dependencies in the distribution are 
strictly those entailed by the Markov Condition of the 
BN [8]. The vast majority of distributions are faithful 
in the sample limit [13]. 

The identification of relevant variables (also called 
features) is an essential component of construction of 
decision support models, and computer-assisted 
discovery. In medical diagnosis, for example, 
elimination of redundant tests from consideration 
reduces risks to patients and lowers healthcare costs 
[1]. The problem of variable selection in biomedicine 
is more pressing than ever, due to the recent 
emergence of extremely large datasets, sometimes 
involving tens to hundreds of  thousands  of 
variables. Such datasets are common in gene-
expression array studies, proteomics, computational 
biology, text-categorization,   information    retrieval,    
mining   of electronic medical records, consumer 
profile analysis, temporal modelling, and other 
domains [1-6].   

The question that arises is whether the algorithm, 
and by extension its assumptions, perform well in 
biomedical data (that, in addition, often involve 
thousands of variables and limited sample), and the 
typical classifiers used in practice. To empirically 
evaluate HITON, a wide variety of domains were 
selected with different characteristics. In addition, the 
best algorithms for each tasks were selected as 
baseline comparisons.  

Most variable selection methods are heuristic in 
nature and empirical evaluations have seldom 
exceeded domains with more than a hundred 
variables (see [7-9] and their references for reviews). 
Several researchers [1, 10, 11] have suggested, 
intuitively, that the Markov Blanket of the target 
variable T, denoted as MB(T), is a key concept for 
solving the variable selection problem. MB(T) is 
defined as the set  of variables  conditioned on  which  

                                                 
1 Pronounced �hee-tόn�. From the Greek Χιτών, for 
�cover�, �cloak�, or �blanket�.  

  



A Novel Algorithm For Variable Selection  
The new algorithm is presented in pseudo-code in 
Figure 1. V denotes the full set of variables and ⊥(T ; 
X | S ) the conditional independence of T with 
variable set X given variable set S.  
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removed by a statistical test inspired by the SGS 
algorithm [14]. HITON-PC admits one-by-one the 
variables in the current estimate of the parents and 
children set CurrentPC. If for any such variable a 
subset is discovered that renders it independent of T, 
then the variable cannot belong in the parents and 
children set and is removed and not considered again 
for inclusion [14]. Given assumptions (i) and (ii)  
HITON-MB provably identifies the MB(T). For proof 
of correctness the interested reader can see [15] 
(available from http://discover1.mc.vanderbilt.edu). 
If k is the maximum number of conditioning and 
conditioned variables in a test, then because k is 
bounded by the available sample (seldom taking 
values > 3 in practice) the average-case complexity is 
approximately O(|MB|3|V|) or better, which makes it 
very fast.  

METHODS 
1. Datasets. The first task is drug discovery, 
specifically classification of biomolecules as binding 
to thrombin (hence having potential or not as anti-
clotting agents) on the basis of molecular structural 
properties [2]. The second task is clinical diagnosis of 
arrhythmia into 8 possible disease categories on the 
basis of clinical and EKG data [5]. The third task is 
categorization of text (Medline documents) from the 
OHSUMED     corpus    (Joachims  version  [6])   as  
relevant to nenonatal diseases or not [16]. The fourth 
task is diagnosis of squamus vs. adenocarcinoma in 
patients with lung cancer using oligonucleotide gene 
expression array data [17]. Finally, the fifth task is 
diagnosis of prostate cancer from analysis of mass-
spectrometry signal peaks obtained from human sera  
[18]. Figure 2 summarizes important characteristics 
of all datasets used in our experiments. We 
specifically sought datasets that are massive in the 
number of variables, and with very unfavourable 
variable-to-sample ratios (as can be seen from the 
figure). 
2. Classifiers. We applied several state-of-the-art 
classifiers: polynomial-kernel Support Vector 
Machines (SVM) [19], K-Nearest Neighbors (KNN) 
[20],  Feed-forward Neural Networks (NNs) [21], 
Decision Trees (DTI) [21] and a text categorization-
optimized Simple (a.k.a., �Naïve�) Bayes Classifier 
(SBCtc) [21]. We applied SVMs, NNs, and KNN to 
all datasets with the exception of Arrhythmia where 
we substituted DTI for SVMs since this domain 
requires a multi-category classification in which 
HITON (Data D; Target T; Classifier-inducer A) 
�returns a minimal set of variables required for optimal 
classification of T using algorithm A�  
MB(T) = HITON-MB(D, T) // Identify Markov Blanket
Vars =  Wrapper(MB(T), T, A) // Use heuristic search to
                                         remove unnecessary variables
Return Vars 
 
HITON-MB(Data D, Target T)  
�returns the Markov Blanket of T� 
PC = parents and children of T returned by 
         HITON-PC(D, T) 
PCPC = parents and children of the parents and 
         children or T 
CurrentMB = PC ∪ PCPC 
// Retain only parents of common children and remove 
parents of parents, children of parents, and children of 
children 
∀ potential spouse X ∈ CurrentMB and ∀ Y ∈ PC: 
    if  ¬∃ S ⊆ {Y} ∪ V -{T,  X} so that  ⊥ (T ; X | S )  
    then retain X  in CurrentMB 
    else remove it  
Return CurrentMB 
 
HITON-PC(Data D, Target T) 
�returns parents and children of T� 
CurrentPC = {} 
Repeat 

Find variable Vi ∉ CurrentPC that maximizes 
association(Vi, T) and admit Vi into CurrentPC

If there is a variable X and a subset S of CurrentPC  
s.t. ⊥(X : T | S) 

          remove X  from CurrentPC; 
          do not consider X again for admission 

Until no more variables are left to consider   
Return CurrentPC 

Wrapper(Vars, T, A) 
�returns a minimal set among variables Vars for 
predicting T using classifier-inducer algorithm A and a 
wrapping (heuristic search) approach� 
Repeat 
Select and remove a variable from Vars. 
If internally cross-validated performance of A remains 
    the same, permanently remove the variable. 
Until all variables are considered.  
Return Vars 
Figure 1: Pseudo-code for algorithm HITON. 

ITON-MB first identifies the parents and children 
f T by calling algorithm HITON-PC, then discovers 
he parents and children of the parents and children of 
. This is a superset of the MB(T). False positives are 

SVMs were not, at the time of experiments, as well-
developed as for binary classification. DTI is 
appropriate for this task (but is well-known to suffer 
in very-high dimensional and sparse datasets such as 
the remaining ones in which it was not applied). The 
text-optimized Bayesian Classifier was used in the 

  



Dataset Thrombin Arrhythmia OHSUMED Lung Cancer Prostate Cancer 
Problem Type Drug 

Discovery 
Clinical 

Diagnosis 
Text 

Categorization 
Gene Expression 

Diagnosis 
Mass-Spec  
Diagnosis 

Variables  # 139,351 279 14,373 12,600 779 
Variable Types binary nominal/ordinal/

continuous 
continuous continuous continuous 

Target binary nominal binary binary binary 
Sample 2,543 417 5000 160 326 

Variables-to-Sample 54.8 0.67 2.87 60 2.4 
Evaluation metric ROC AUC Accuracy ROC AUC ROC AUC ROC AUC 

Design 1-fold c.v. 10-fold c.v. 1-fold c.v. 5-fold c.v. 10-fold c.v. 
 

Figure 2: Dataset Characteristics 

text classification task only. For SVMs we used the 
LibSVM implementation [22] that is based on Platt�s 
SMO algorithm [23], with C chosen from the set: 
{10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2, 0.1, 1, 10, 100, 
1000} and degree from the set: {1, 2, 3, 4}. Thus 
effectively we examine the performance of linear 
SVMs as part of the parameterization of polynomial 
SVMs. For KNN, we chose k from the range: [1,�, 
number of samples in the training set] using our own 
implementation of the algorithm. For NNs we used 
the Matlab Neural Network Toolbox with 1 hidden 
layer, number of units chosen (heuristically) from the 
set {2, 3, 5, 8, 10, 30, 50}, variable-learning-rate 
back propagation, custom-coded early stopping with 
(limiting) performance goal=10-8 (i.e., an arbitrary 
value very close to zero), and number of epochs in 
the range [100,�,10000], and a fixed momentum of 
0.001. We used Quinlan�s See5 commercial 
implementation of  C4.5  Decision  Tree Induction 
and our own implementation of the text-oriented 
Simple Bayes Classifier described in [21].  
3. Variable selection baselines. We compare  HITON 
against several powerful variable selection 
procedures that have been previously shown to be the 
best performers in each general type of classification 
task. These methods are: Univariate Association 
Filtering (UAF) (for all tasks), Recursive Feature 
Elimination (RFE) (for bioinformatics- related tasks), 
and Backward/Forward Wrapping (for clinical 
diagnosis tasks) [24].  RFE is an SVM�based 
method; it was employed using the parameters 
reported in [4].  Univariate Association Filtering is a 
common and robust applied classical statistics 
procedure. In text categorization especially, extensive 
experiments have established its superior 
performance [25]. UAF:   (a) Orders all predictors 
according to strength of  pair-wise (i.e., univariate) 
association with the target, and (b)  Chooses the first 
k predictors and feeds them to  the classifier of 
choice. Various measures of association may be used. 
We used Fisher Criterion Scoring for gene expression 

data [3], X2 and Information Gain for text 
categorization [25], Kruskal-Wallis ANOVA for the 
continuous variables of Arrhythmia, and G2, for the 
remaining datasets [14]. To maximize the 
performance of the method we did not select an 
arbitrary k but optimised it via cross-validation. We 
used our own implementations of all baseline 
variable selection algorithms. In the reported 
experiments we did not include any of the previous 
methods for inducing MB(T) (most notably the 
highly-cited Koller-Sahami algorithm [11], but also 
the ones in [1, 2, 10]) because they are 
computationally intractable for datasets as large as 
the ones used in our evaluation.  The sound and 
tractable algorithms of [8, 12] are guaranteed to 
return worse results than HITON for finite samples 
due to their theoretical properties and thus were 
omitted from consideration in these preliminary 
experiments. 
4. Cross-validation.  We employed a nested stratified 
cross-validation design [20] throughout, in which the 
outer loop of cross-validation estimates the 
performance of the optimised classifiers while the 
inner loop is used to find the best parameter 
configuration/variable subset for each classifier. The 
number of folds was decided based on sample 
(Figure 2). In the datasets where 1-fold cross-
validation was used, the split ratio was 70/30.  
5. Evaluation metrics. In all reported experiments 
except the Arrhythmia data, we used the area under 
the Receiver Operator Characteristic (ROC) curve  
(AUC) to evaluate the classification performance of 
the produced models.  The classifiers� outputs were 
thresholded to derive the ROCs. AUC was computed 
using the trapezoidal rule and statistical comparisons 
among AUCs were performed using an unpaired 
Wilcoxon rank sum test. The size reduction was 
evaluated by fraction of variables in the resulting 
models. All metrics (variable reduction, AUC) were 
averaged over cross-validation splits [20].  

  



6. Statistical choices. In all our experiments we apply 
HITON with a G2 test of statistical independence 
with a significance level set to 5%, and degrees of 
freedom according to [14].   As measure of 
association in HITON-PC we use the p-value of the 
G2 test (association increases monotonically with the 
negative p-value). 

1. Drug Discovery (Thrombin) 
 UAF* RFE HITON ALL 

SVM 96.12% 93.29% 93.23% 93.69% 
KNN 87.25% 89.71% 92.23% 88.21% 
NN N/A 92.04% 92.65% N/A 

Average 91.69% 91.68% 92.7% 90.95% 
# of 

variables 
34837 

 
8709 

 
32 

 
139351 

 
2. Clinical Diagnosis (Arrhythmia) 

 UAF* B/F* HITON* ALL* 
DTI 73.94% 72.85% 71.87% 73.94% 
KNN 63.22% 63.45% 65.30% 63.22% 
NN 58.29% 60.90% 60.38% 58.29% 

Average 65.15% 
 

65.73% 
 65.85% 65.15% 

 
# of 

variables 279 96 63 279 

3. Text Categorization (OHSUMED) 
 IG X2 HITON ALL* 

SVM 82.43% 85.91% 82.85% 90.50% 
SBCtc 84.18% 86.23% 85.10% 84.25% 
KNN 75.55%    81. 6% 7 80.25% 77.56% 

NN 82.47%   85.27%  83.97% N/A 
Average 81.16% 84.79% 83.04% 84.10% 

# of 
variables 224 112 34 14373 

4. Gene Expression Diagnosis (Lung Cancer) 
 UAF* RFE* HITON* ALL* 

SVM 99.32% 98.57% 97.83% 99.07% 
NN 99.63% 98.70% 98.92% N/A 

KNN 95.57% 91.49% 96.06% 97.59% 
Average 98.17% 96.25% 97.60% 98.33% 

# of 
variables 

 
330 

 
19 

 
16 

 
12,600 

5. Mass-Spectrometry Diagnosis (Prostate Cancer) 
 UAF* RFE* HITON* ALL* 

SVM 98.50% 98.95% 99.10% 99.40% 
NN 98.62% 98.78% 97.95% 99.27% 

KNN 77.52% 86.53% 91.36% 76.94% 
Average 91.55% 94.75% 96.14% 91.87% 

# of 
variables 

 
706 

 
87 

 
16 

 
779 

Averages Over All Tasks 

 Av. over Baseline 
Algorithms HITON ALL 

Av. Perf. over 
classifiers 

 
86.1% 

 
87.1% 

 
86.1% 

Av. variable #  
4540 

 
32.3 

 
33,476 

Av. reduction x  8 x  1124 x  1 
Figure 3: Task-specific and overall model 
reduction performance (in bold, best performance 
per row; asterisks indicate that the corresponding 
algorithm yields the best model or a non-
statistically significantly worse model than the 
best one). 

RESULTS 
As can be seen in Figure 3, (a) HITON consistently 
produces the smallest variable sets in each 
task/dataset; the reduction in variables ranges from 
4.4 times (Arrhythmia) to 4,315 times (thrombin); (b) 
in 3 out of 5 tasks HITON produces the best classifier  
or a classifier that is statistically non-significantly 
different from the best (compared to 4 out of 5 for all 
other baselines combined); (c) in summary (i.e., 
averaged over all classifiers in each task/dataset), 
HITON produces the models with best classification 
performance in 4 our of 5 tasks; (d) averaged over all 
classifiers and tasks/datasets, HITON exhibits best 
classification performance, and best variable 
reduction (~140 times smaller models on the average, 
than the baseline methods� average, and ~1100 times 
on the average smaller models than the average total 
number of variables). (e) Compared to using all 
variables, HITON improves performance 2 times out 
of 5, while maintains performance another two times 
out of 5 and yields minimally worse performance in 
the remaining task (text categorization). HITON can 
be run in a few hours for massive datasets using very 
inexpensive computer platforms. For example, it took 
8 to 9 hours (depending on classifier) to run in the 
massive thrombin dataset (baselines: 4 to 4.7 hours) 
using a Intel Xeon 2.4 GHz computer with 2 GB of 
RAM.   

DISCUSSION  
All previous algorithms for soundly inducing the 
MB(T) condition on the full MB(T) and thus require 
exponential sample size to the size of the MB(T) [8, 
12, 26]. HITON (as close examination of subroutine 
HITON-PC reveals), conditions on the locally 
smallest possible variable set needed to establish 
independence. This yields up to exponentially smaller 
required sample than [8, 12, 26] without 
compromising soundness.    Any non-members of the 
Markov Blanket that cannot be excluded due to the 
small sample are removed by the final (wrapper) 
phase (which is tractable because it operates in much 
smaller variable set than the full set).  
    Algorithms that operate by inducing the full 
network first [1, 10] although sound, are clearly 
intractable for large domains. The widely-cited 
Koller-Sahami algorithm is unsound, cannot be run in 
datasets as large as the ones used in our experiments, 

and was recently shown to perform worse than other 
(sound) algorithms [26]. Thus HITON is the first 
Markov Blanket � inducing algorithm that combines 

  



  

the following three properties: (a) is sound; (b) is 
highly-scalable to the number of variables; (c) is 
sample-efficient relative to the size of the Markov 
Blanket. Our experimental evaluation suggests that it 
is applicable to a wide variety of biomedical data, in 
particular: structural molecular biology, clinical 
diagnosis, text-categorization, gene expression 
analysis, and proteomics. 
    Given that HITON has a well-specified set of 
assumptions for correctness we can also outline the 
situations for which its use is expected to be non-
optimal as involving: (a) strong violations of 
faithfulness (e.g., parity functions, noiseless 
deterministic functions, quantum effects, certain 
mixtures of distributions [14]), (b) very small 
samples (in practice <150 instances with binary 
variables, in our experience), and/or (c) restricted 
classifiers or uncommon loss functions. 
    HITON�s power stems from a well-founded 
theoretical base and because it makes a minimal set 
of widely-applicable assumptions. Especially with 
respect to the faithfulness assumption, HITON�s 
robustness in our experiments implies that either 
biomedical data do not exhibit severe violations of 
this distributional assumption, or that such violations 
are mitigated by currently poorly-understood  factors.   
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